Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Heliyon ; 10(16): e36358, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39258189

RESUMEN

Objective: Long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of laryngeal squamous cell carcinoma (LSCC). This study aimed to investigate the roles of AC068768.1 in LSCC. Methods: Exosomes were extracted by ultracentrifugation and identified by transmission electron microscopy (TEM) assay. The expression levels of mRNA and miRNA were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cellular functions were assesses through immunofluorescence, flow cytometry, colony formation, wound healing and transwell assays. Chromatin immunoprecipitation (ChIP) and luciferase assays were conducted to verify the binding of AC068768.1 by signal transducer and activator of transcription 3 (STAT3). Xenograft assays were performed to confirm the roles of AC068768.1 in LSCC, and hematoxylin-eosin (HE) staining was applied for histological analysis. Results: LSCC cell-derived exosomes induced M2-like tumor-associated macrophages (TAM2) polarization, which promoted the proliferation, migration, and invasion of LSCCs. Knockdown of exosomal AC068768.1 inhibited M2 polarization and suppressed LSCC aggressiveness both in vitro and in vivo. Moreover, AC068768.1 sponged miR-139-5p, inducing the upregulation of neurogenic locus notch homolog protein 1 (NOTCH1). LSCCs adapted to TAM2 polarization in the tumor microenvironment via AC068768.1-mediated activation of the NOTCH1 pathway. Additionally, NOTCH1 activated STAT3. Conclusion: The AC068768.1/miR-139-5p/NOTCH1/STAT3 axis promotes the metastasis of LSCC. This finding may provide a novel target for LSCC therapy.

2.
Phys Rev Lett ; 133(4): 043401, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121402

RESUMEN

We report on an experimental simulation of the spin-1 Heisenberg model with composite bosons in a one-dimensional chain based on the two-component Bose-Hubbard model. Exploiting our site- and spin-resolved quantum gas microscope, we observed faster superexchange dynamics of the spin-1 system compared to its spin-1/2 counterpart, which is attributed to the enhancement effect of multi-bosons. We further probed the nonequilibrium spin dynamics driven by the superexchange and single-ion anisotropy terms, unveiling the linear expansion of the spin-spin correlations, which is limited by the Lieb-Robinson bound. Based on the superexchange process, we prepared and verified the entangled qutrits pairs with these composite spin-1 bosons, potentially being applied in qutrit-based quantum information processing.

3.
Phys Chem Chem Phys ; 26(32): 21668-21676, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087867

RESUMEN

Bismuth halogenoxide (BiOX)-based heterojunctions have garnered considerable attention recently due to their potential to enhance photocatalytic performance. However, the predominant focus on II-type heterojunctions has posed challenges in achieving the requisite band edge positions for efficient water splitting. In this investigation, stable van der Waals SbPO4/BiOClxBr1-x heterojunctions were constructed theoretically by using density-functional theory (DFT). Our findings demonstrate that SbPO4 can modulate the formation of Z-scheme heterojunctions with BiOClxBr1-x. The structural properties of BiOX were preserved, while reaching excellent photocatalytic capabilities with high redox capacities. Further investigation unveiled that the band edge positions of the heterojunctions fully satisfy the oxidation-reduction potential of water. Moreover, these heterojunctions exhibit notable absorption efficiency in the visible range, with absorption increasing as x decreases. Our research provides valuable theoretical insights for the experimental synthesis of high-performance BiOX-based photocatalysts for water splitting, leveraging the unique properties of SbPO4. These insights contribute to the advancement of clean energy technology.

4.
Commun Biol ; 7(1): 1003, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152196

RESUMEN

Rhein, a component derived from rhubarb, has been proven to possess anti-inflammatory properties. Here, we show that rhein mitigates obesity by promoting adipose tissue thermogenesis in diet-induced obese mice. We construct a macrophage-adipocyte co-culture system and demonstrate that rhein promotes adipocyte thermogenesis through inhibiting NLRP3 inflammasome activation in macrophages. Moreover, clues from acetylome analysis identify SIRT2 as a potential drug target of rhein. We further verify that rhein directly interacts with SIRT2 and inhibits NLRP3 inflammasome activation in a SIRT2-dependent way. Myeloid knockdown of SIRT2 abrogates adipose tissue thermogenesis and metabolic benefits in obese mice induced by rhein. Together, our findings elucidate that rhein inhibits NLRP3 inflammasome activation in macrophages by regulating SIRT2, and thus promotes white adipose tissue thermogenesis during obesity. These findings uncover the molecular mechanism underlying the anti-inflammatory and anti-obesity effects of rhein, and suggest that rhein may become a potential drug for treating obesity.


Asunto(s)
Antraquinonas , Macrófagos , Obesidad , Sirtuina 2 , Termogénesis , Animales , Masculino , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Antraquinonas/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Sirtuina 2/metabolismo , Sirtuina 2/genética , Termogénesis/efectos de los fármacos
5.
Inorg Chem ; 63(36): 16799-16806, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39193871

RESUMEN

In this study, charge-transfer-type compounds comprising synthesized naphthalenediimide derivative (H4NDISA) or its Pb-based coordination polymer (Pb-NDISA) and suitable primary or secondary amine organic molecules were prepared by the solvent-free mechanical grinding method. The coloration phenomenon arising from charge transfer during grinding serves as a discriminative tool for distinguishing various organic guest molecules. The porous structure of Pb-NDISA crystals facilitates the infiltration of guest molecules and contributes to the preservation of the intermolecular charge transfer state. Moreover, the intermolecular charge transfer induced by grinding exhibits remarkable stability in an ambient atmosphere, underscoring the pivotal role of well-ordered molecules in the mechanical grinding procedure. This mechanochromic phenomenon holds promise for the detection and sensing of organic molecules, while the exceptional charge-transfer absorption characteristics offer the potential for efficient near-infrared photothermal conversion.

6.
World J Gastrointest Surg ; 16(6): 1660-1669, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38983352

RESUMEN

BACKGROUND: Advanced gastric cancer is a common malignancy that is often diagnosed at an advanced stage and is still at risk of recurrence after radical surgical treatment. Chemoradiotherapy, as one of the important treatment methods for gastric cancer, is of great significance for improving the survival rate of patients. However, the tumor recurrence and survival prognosis of gastric cancer patients after radiotherapy and chemotherapy are still uncertain. AIM: To analyze the tumor recurrence after radical radiotherapy and chemotherapy for advanced gastric cancer and provide more in-depth guidance for clinicians. METHODS: A retrospective analysis was performed on 171 patients with gastric cancer who received postoperative adjuvant radiotherapy and chemotherapy in our hospital from 2021 to 2023. The Kaplan-Meier method was used to calculate the recurrence rate and survival rate; the log-rank method was used to analyze the single-factor prognosis; and the Cox model was used to analyze the prognosis associated with multiple factors. RESULTS: The median follow-up time of the whole group was 63 months, and the follow-up rate was 93.6%. Stage II and III patients accounted for 31.0% and 66.7%, respectively. The incidences of Grade 3 and above acute gastrointestinal reactions and hematological adverse reactions were 8.8% and 9.9%, respectively. A total of 166 patients completed the entire chemoradiotherapy regimen, during which no adverse reaction-related deaths occurred. In terms of the recurrence pattern, 17 patients had local recurrence, 29 patients had distant metastasis, and 12 patients had peritoneal implantation metastasis. The 1-year, 3-year, and 5-year overall survival (OS) rates were 83.7%, 66.3%, and 60.0%, respectively. The 1-year, 3-year, and 5-year disease-free survival rates were 75.5%, 62.7%, and 56.5%, respectively. Multivariate analysis revealed that T stage, peripheral nerve invasion, and the lymph node metastasis rate (LNR) were independent prognostic factors for OS. CONCLUSION: Postoperative intensity-modulated radiotherapy combined with chemotherapy for gastric cancer treatment is well tolerated and has acceptable adverse effects, which is beneficial for local tumor control and can improve the long-term survival of patients. The LNR was an independent prognostic factor for OS. For patients with a high risk of local recurrence, postoperative adjuvant chemoradiation should be considered.

7.
Heliyon ; 10(12): e32779, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975226

RESUMEN

Background: Sepsis is a life-threatening condition marked by a severe systemic response to infection, leading to widespread inflammation, cellular signaling disruption, and metabolic dysregulation. The role of lipid and amino acid metabolism in sepsis is not fully understood, but aberrations in this pathway could contribute to the disease's pathophysiology. Methods: To explore the potential of lipid and amino acid compounds as biomarkers for the diagnosis and prognosis of sepsis, a two-sample Mendelian Randomization (MR) study was conducted, examining the relationship between sepsis and 249 serum lipid and amino acid-related markers. Key enzymes involved in synthesis of phosphatidylcholine, including choline/ethanolamine phosphotransferase 1 (CEPT1), choline phosphotransferase 1 (CPT1), and ethanolamine phosphotransferase 1 (EPT1), were also targeted for drug-target Mendelian randomization. Results: The study found that phosphatidylcholines (OR IVW: 0.88, 95%CI: 0.80-0.96, p = 0.005) and phospholipids in medium HDL (OR IVW: 0.86, 95%CI: 0.77-0.96, p = 0.007) potentially exhibit a protective effect against sepsis nominally. However, the potential drug target of CEPT1, CPT1, and EPT1 was found to be unrelated to septic outcomes. Conclusion: Our findings suggest that increasing levels of phosphatidylcholines and medium HDL phospholipids may reduce the incidence of sepsis. This highlights the potential of lipid-based biomarkers in the diagnosis and management of sepsis, opening avenues for new therapeutic strategies.

8.
Small ; : e2402141, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953313

RESUMEN

Abdominal aortic aneurysm (AAA) represents a critical cardiovascular condition characterized by localized dilation of the abdominal aorta, carrying a significant risk of rupture and mortality. Current treatment options are limited, necessitating novel therapeutic approaches. This study investigates the potential of a pioneering nanodrug delivery system, RAP@PFB, in mitigating AAA progression. RAP@PFB integrates pentagalloyl glucose (PGG) and rapamycin (RAP) within a metal-organic-framework (MOF) structure through a facile assembly process, ensuring remarkable drug loading capacity and colloidal stability. The synergistic effects of PGG, a polyphenolic antioxidant, and RAP, an mTOR inhibitor, collectively regulate key players in AAA pathogenesis, such as macrophages and smooth muscle cells (SMCs). In macrophages, RAP@PFB efficiently scavenges various free radicals, suppresses inflammation, and promotes M1-to-M2 phenotype repolarization. In SMCs, it inhibits apoptosis and calcification, thereby stabilizing the extracellular matrix and reducing the risk of AAA rupture. Administered intravenously, RAP@PFB exhibits effective accumulation at the AAA site, demonstrating robust efficacy in reducing AAA progression through multiple mechanisms. Moreover, RAP@PFB demonstrates favorable biosafety profiles, supporting its potential translation into clinical applications for AAA therapy.

9.
World J Gastrointest Oncol ; 16(7): 2941-2951, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072162

RESUMEN

BACKGROUND: Subphrenic carcinoma has been identified as a significant risk factor for the thermal ablation of intrahepatic tumors, resulting in a high rate of residual tumor recurrence. Some studies have proposed that combination treatment with transarterial chemoembolization (TACE) followed by radiofrequency ablation is both feasible and safe for tumors in the subphrenic region. However, research specifically examining the therapeutic outcomes of combination therapy using TACE and microwave ablation (TACE-MWA) in subphrenic tumors is lacking. AIM: To evaluate the efficacy and safety of TACE-MWA in patients with subphrenic hepatocellular carcinoma (HCC). METHODS: Between December 2017 and December 2021, 49 patients diagnosed with HCC ≤ 6 cm, who received TACE-MWA, were included in this retrospective cohort study. These patients were classified into subphrenic and non-subphrenic groups based on the distance between the diaphragm and the tumor margin. The rates of local tumor progression (LTP), progression-free survival (PFS), and overall survival (OS) were compared between the two groups. Complications were evaluated by using a grading system developed by the Society of Interventional Radiology. RESULTS: After a median follow-up time of 38 mo, there were no significant differences in LTP between the subphrenic and non-subphrenic groups (27.3% and 22.2% at 5 years, respectively; P = 0.66), PFS (55.5% at 5 years in both groups; P = 0.91), and OS (85.0% and 90.9% in the subphrenic and non-subphrenic groups at 5 years; P = 0.57). However, a significantly higher rate of LTP was observed in subphrenic HCC > 3 cm compared to those ≤ 3 cm (P = 0.085). The dosage of iodized oil [hazard ratio (HR): 1.52; 95% confidence interval (CI): 1.11-2.08; P = 0.009] and multiple tumors (HR: 13.22; 95%CI: 1.62-107.51; P = 0.016) were independent prognostic factors for LTP. There were no significant differences in complication rates between the two groups (P = 0.549). CONCLUSION: Combined TACE and MWA was practical and safe for managing subphrenic HCC. The efficacy and safety levels did not vary significantly when tumors outside the subphrenic region were treated.

10.
Acta Pharmacol Sin ; 45(10): 2174-2185, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38844788

RESUMEN

FAK (focal adhesion kinase) is widely involved in cancer growth and drug resistance development. Thus, FAK inhibition has emerged as an effective strategy for tumor treatment both as a monotherapy or in combination with other treatments. But the current FAK inhibitors mainly concentrate on its kinase activity, overlooking the potential significance of FAK scaffold proteins. In this study we employed the PROTAC technology, and designed a novel PROTAC molecule F2 targeting FAK based on the FAK inhibitor IN10018. F2 exhibited potent inhibitory activities against 4T1, MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells with IC50 values of 0.73, 1.09, 5.84 and 3.05 µM, respectively. On the other hand, F2 also remarkably reversed the multidrug resistance (MDR) in HCT8/T, A549/T and MCF-7/ADR cells. Both the effects of F2 were stronger than the FAK inhibitor IN10018. To our knowledge, F2 was the first reported FAK-targeted PROTAC molecule exhibiting reversing effects on chemotherapeutic drug resistance, and its highest reversal fold could reach 158 times. The anti-tumor and MDR-reversing effects of F2 might be based on its inhibition on AKT (protein kinase B, PKB) and ERK (extracellular signal-regulated kinase) signaling pathways, as well as its impact on EMT (epithelial-mesenchymal transition). Furthermore, we found that F2 could reduce the protein level of P-gp in HCT8/T cells, thereby contributing to reverse drug resistance from another perspective. Our results will boost confidence in future research focusing on targeting FAK and encourage further investigation of PROTAC with potent in vivo effects.


Asunto(s)
Antineoplásicos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Quinasa 1 de Adhesión Focal , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Ratones , Proliferación Celular/efectos de los fármacos
11.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1388-1396, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38886438

RESUMEN

We conducted field surveys on foraging habitat and foraging activities of Picoides tridactylus in Liangshui National Nature Reserve of Heilongjiang Province, China, from April to May and November to December 2022. By using the resource selection function, we analyzed the factors affecting foraging habitat selection of P. tridactylus, compared the differences between foraging habitat selection and foraging activities in winter and spring by chi-square and Mann-Whitney U tests, and investigated their foraging preference with Bailey's method. The results showed that dominant tree species and dead arbor number were the important factors affecting foraging habitat selection of P. tridactylus. They preferred habitats with a large number of dead arbor and dominant trees, such as Picea asperata and Abies fabri. They preferred trees with a height of 10-20 m and a diameter at breast height of 15-45 cm. In spring, they favored semi-withered arbors and showed random utilization of P. koraiensis. During winter, they preferred dead arbors and avoided choosing P. koraiensis. They preferred to forage on tree trunk, in spring pecking in the middle of the tree for a short duration, and during winter, digging in the upper part of the tree for a long duration. Foraging habitat selection and foraging activities of P. koraiensis showed certain differences between winter and spring.


Asunto(s)
Ecosistema , Estaciones del Año , China , Animales , Árboles/crecimiento & desarrollo , Conducta Alimentaria , Picea/crecimiento & desarrollo , Conservación de los Recursos Naturales
12.
Kaohsiung J Med Sci ; 40(7): 621-630, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820598

RESUMEN

Suitable biomaterials with seed cells have promising potential to repair bone defects. However, bone marrow mesenchymal stem cells (BMSCs), one of the most common seed cells used in tissue engineering, cannot differentiate efficiently and accurately into functional osteoblasts. In view of this, a new tissue engineering technique combined with BMSCs and scaffolds is a major task for bone defect repair. Lentiviruses interfering with miR-136-5p or Smurf1 expression were transfected into BMSCs. The effects of miR-136-5p or Smurf1 on the osteogenic differentiation (OD) of BMSCs were evaluated by measuring alkaline phosphatase activity and calcium deposition. Then, the targeting relationship between miR-136-5p and Smurf1 was verified by bioinformatics website analysis and dual luciferase reporter assay. Then, a rabbit femoral condyle bone defect model was established. miR-136-5p/BMSCs/ß-TCP scaffold was implanted into the defect, and the repair of the bone defect was detected by Micro-CT and HE staining. Elevating miR-136-5p-3p or suppressing Smurf1 could stimulate OD of BMSCs. miR-136-5p negatively regulated Smurf1 expression. Overexpressing Smurf1 reduced the promoting effect of miR-136-5p on the OD of BMSCs. miR-136-5p/BMSCs/ß-TCP could strengthen bone density in the defected area and accelerate bone repair. SmurF1-targeting miR-136-5p-modified BMSCs combined with 3D-printed ß-TCP scaffolds can strengthen osteogenic activity and alleviate bone defects.


Asunto(s)
Fosfatos de Calcio , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Impresión Tridimensional , Andamios del Tejido , Ubiquitina-Proteína Ligasas , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Andamios del Tejido/química , Conejos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Fosfatos de Calcio/química , Diferenciación Celular , Ingeniería de Tejidos/métodos , Masculino , Regeneración Ósea/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-38679933

RESUMEN

The CO2 reduction reaction (CO2RR) is a promising method that can both mitigate the greenhouse effect and generate valuable chemicals. The 2D-M2C12 with high-density transition metal single atoms is a potential catalyst for various catalytic reactions. Using an effective strategy, we screened 1s-Mn2C12 as the most promising electrocatalyst for the CO2RR in the newly reported 2D-M2C12 family. A low applied potential of -0.17 V was reported for the CO2-to-CH4 conversion. The relative weak adsorption of H atom and H2O in the potential range of -0.2 to -0.8 V, ensures the preferential adsorption of CO2 and the following production of CH4. The different loading amounts of Mn atoms on γ-graphyne (GY) were also investigated. The Mn atoms prefer doping in the nonadjacent triangular pores instead of the adjacent ones due to the repulsive forces between d-orbitals when the Mn loading is less than 32.3 wt % (5Mn). As the Mn concentration further increases, adjacent Mn atoms begin to appear, and the Mn@GY becomes metallic or half-metallic. The presence of four adjacent Mn atoms increases the d-band center of Mn@GY, particularly the dz2 center involved in CO2 adsorption, thereby enhancing the adsorption capacity for CO2. These findings indicate that 1s-Mn2C12 with high Mn atomic loadings is an excellent CO2RR electrocatalyst, and it provides new insights for designing efficient CO2RR electrocatalyst.

14.
BMC Pulm Med ; 24(1): 175, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609980

RESUMEN

Interstitial lung disease (ILD) can lead to lung cancer, which brings great challenges to differential diagnosis and comprehensive treatment. However, the clinical features of lung-dominant connective tissue disease (LD-CTD) related ILD combined with lung cancer has not been validated. We report the case of an 80-year-old woman with LD-CTD treated regularly with nintedanib who presented progressive dyspnoea and hypoxemia after recurrent viral infections. Her chest computed tomography (CT) showed aggravated interstitial fibrosis in both lower lungs with moderate right pleural effusion. Clinicians should be alert to lung cancer in patients who are experiencing poor responsiveness to treatment or acute progression of ILD. The available literatures about the differential diagnosis of clinical manifestations, imaging, treatment and prognosis of LD-CTD are reviewed and discussed in this study.


Asunto(s)
Adenocarcinoma del Pulmón , Enfermedades del Tejido Conjuntivo , Enfermedades Pulmonares Intersticiales , Neoplasias Pulmonares , Humanos , Femenino , Anciano de 80 o más Años , Estudios de Seguimiento , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Enfermedades del Tejido Conjuntivo/complicaciones , Enfermedades del Tejido Conjuntivo/diagnóstico , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/etiología
15.
Eur J Phys Rehabil Med ; 60(3): 487-495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551517

RESUMEN

BACKGROUND: Given the complex etiology, multidimensional impact, and widespread prevalence of low back pain (LBP), it is crucial to prioritize intervention targets based on understanding the relationships between functional impairments in patients. This prioritization maximizes the physical and psychological benefits for patients, and graph modeling holds promise in achieving these objectives. AIM: The aim of this study was establishing a graphical model of functioning variables for LBP based on the International Classification of Functioning, Disability, and Health (ICF) to identify the most influential items (i.e., functioning variables) on the physical and mental well-being of patients. Exploring feasible intervention measures by understanding the dysfunction correlations among these variables. DESIGN: Cross-sectional survey. SETTING: Nine hospitals in Jiangsu Province, China. POPULATION: Three hundred and six persons with LBP aged ≥18 years. METHODS: All patients were assessed using the Comprehensive ICF Core Sets for LBP. The scoring system was converted to dichotomous data, with 1 indicating dysfunction and 0 indicating no dysfunction. In the graphical model, network parameters and the results of Item Response Theory modeling (as detailed in our other article) were used to determine the importance of items, while partial correlations were utilized to estimate the dysfunction correlations between functioning variables. RESULTS: 1) A total of 56 ICF items were located in the backbone structure of LBP, among which d430 (Lifting and carrying objects) occupied the most central position, followed by b126 (Temperament and personality functions). 2) In the main component of backbone structure, d430 has moderate dysfunction correlation with looking after one's health (0.6027), social norms, practices and ideologies (0.597), stability of joint functions (0.5759), and emotional functions (0.4078). b126 has moderate dysfunction correlation with basic interpersonal interactions (0.6595). CONCLUSIONS: d430 and b126 significantly impact the physical and mental well-being of LBP patients. To improve d430, maintaining exercise habits, reducing working hours, enhancing lumbar stability, and overcoming fear-related emotions are recommended. Similarly, improving b126 can be achieved through enhancing interpersonal relationships. CLINICAL REHABILITATION IMPACT: Through the identification of crucial functioning variables and the associated dysfunctional correlation relationships, graphical model of Comprehensive ICF Core Set for LBP can offer healthcare decision-makers valuable insights into potential treatment targets and pathways aimed at improving the condition of LBP patients.


Asunto(s)
Evaluación de la Discapacidad , Clasificación Internacional del Funcionamiento, de la Discapacidad y de la Salud , Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/psicología , Dolor de la Región Lumbar/rehabilitación , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Adulto , China
16.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38488084

RESUMEN

In our study, we investigated the influence of the local structure of amorphous Li-La-Zr-O (a-LLZO) on Li-ion conductivity using ab initio molecular dynamics (AIMD). A-LLZO has shown promising properties in inhibiting the growth of lithium dendrites, making it a potential candidate for solid electrolytes in all-solid-state lithium batteries. The low Li-ion conductivity of a-LLZO is currently limiting its practical applications. Our findings revealed that the homogeneous distribution of Zr-O polyhedra within the pristine structure of a-LLZO contributes to enhanced Li-ion conductivity. By reducing the interconnections among Zr-O polyhedra, the AIMD-simulated a-LLZO sample achieved a Li-ion conductivity of 5.78 × 10-4 S/cm at room temperature, which is slightly lower than that of cubic LLZO (c-LLZO) with a Li-ion conductivity of 1.63 × 10-3 S/cm. Furthermore, we discovered that Li-ion conductivity can be influenced by adjusting the elemental ratios within a-LLZO. This suggests that fine-tuning the composition of a-LLZO can potentially further enhance its Li-ion conductivity and optimize its performance as a solid electrolyte in lithium batteries.

17.
Gene ; 908: 148281, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38360124

RESUMEN

The upregulation of methyltransferase-like 3 (METTL3) has been associated with the progression of esophageal cancer. However, METTL3-induced N6-methyladenosine (m6A) alterations on the downstream target mRNAs in esophageal squamous cell carcinoma (ESCC) are not yet fully understood. Our study revealed that silencing METTL3 resulted in a significant decrease in ESCC cell proliferation and metastasis in vitro and in vivo. Additionally, the adhesion molecule with Ig like domain 2 (AMIGO2) was identified as a potential downstream target of both METTL3 and YTH Domain-Containing Protein 1 (YTHDC1) in ESCC cells. Functionally, AMIGO2 augmented the malignant behaviors of ESCC cells in vitro and in vivo, and its overexpression can rescue the inhibition of the proliferation and migration in ESCC cells induced by METTL3 or YTHDC1 knockdown. Furthermore, our findings revealed that knockdown of METTL3 decreased m6A modification in the 5'-untranslated regions (5'UTR) of AMIGO2 precursor mRNA (pre-mRNA), and YTHDC1 interacted with AMIGO2 pre-mRNA to regulate AMIGO2 expression by modulating the splicing process of AMIGO2 pre-mRNA in ESCC cells. These findings highlighted a novel role of the METTL3-m6A-YTHDC1-AMIGO2 axis in regulating ESCC cell proliferation and motility, suggesting its potential as a therapeutic target for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Precursores del ARN/metabolismo , Proliferación Celular/genética , Regulación hacia Arriba , Metiltransferasas/genética , Metiltransferasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Empalme de ARN/genética
18.
Inorg Chem ; 63(7): 3327-3334, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38315152

RESUMEN

Recently, facilely designable metal-organic frameworks have gained attention in the construction of photothermal conversion materials. Nonetheless, most of the previously reported photothermal conversion metal-organic frameworks exhibit limited light absorption capabilities. In this work, a distinctive metal-organic framework with heterogeneous periodic alternate spatial arrangements of metal-oxygen clusters and perylene-based derivative molecules was prepared by in situ synthesis. The building blocks in this inimitable structure behave as both electron donors and electron acceptors, giving rise to the significant inherent charge transfer in this crystalline material, resulting in a narrow band gap with excellent panchromatic absorption, with the ground state being the charge transfer state. Moreover, it can retain excellent air-, photo-, and water-stability in the solid state. The excellent stability and broad light absorption characteristics enable the effective realization of near-infrared (NIR) photothermal conversion, including infrequent NIR-II photothermal conversion, in this perylene-based metal-organic framework.

19.
Huan Jing Ke Xue ; 45(1): 606-616, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216509

RESUMEN

Acid modification has been widely used to modify the structural properties of biochars. However, acid modification led to the large consumption of acid, increased difficulty of waste effluent disposal, and a high application cost. To evaluate the advantages and application potential of biochars prepared under CO2, utilizing pyrolysis to directly modify biochars to improve heavy metal removal efficiency and reduce production cost, would be an important prerequisite for the broad application of biochars. The sorption performance of Pb2+ with CO2-modified biochars was compared with that of HNO3-modified biochar. The elemental compositions and structural properties of biochars were characterized through elemental analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results revealed that for biochars produced at 500℃, HNO3 modification produced abundant carboxylic groups and -NO2 (asy) and -NO2 (sym) groups, promoting the surface activities and complexing abilities of biochars. The CO2-modified biochars contained abundant carbonate minerals, which could remove Pb2+ by electrostatic ion exchange and coprecipitation or complex. In addition, compared to that of HNO3-modified biochars, CO2-modified biochars had the larger specific surface area and better microporous structures, which were beneficial to the diffusion of Pb2+ and further promoted surface sorption. CO2 modification increased the maximum Pb2+ sorption capacity of W500CO2 and W700CO2, which were 60.14 mg·g-1 and 71.69 mg·g-1. By contrast, HNO3-modified biochars W500N2-A and W700N2-A showed the lower Pb2+ sorption capacities, which were 42.26 mg·g-1 and 68.3 mg·g-1, respectively. The increasing of the specific surface area and functional groups simultaneously promoted the sorption capacity of CO2-modified biochars. Consequently, the CO2-modified biochar had the advantages of low cost, environmental friendliness, and high heavy metal removal efficiency, which is a modification method worthy of promotion and application.

20.
Biomed Pharmacother ; 171: 116112, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171246

RESUMEN

Ferroptosis is a newly identified form of non-apoptotic programmed cell death, characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species (ROS) and peroxidation of membrane polyunsaturated fatty acid phospholipids (PUFA-PLs). Ferroptosis is unique among other cell death modalities in many aspects. It is initiated by excessive oxidative damage due to iron overload and lipid peroxidation and compromised antioxidant defense systems, including the system Xc-/ glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and the GPX4-independent pathways. In the past ten years, ferroptosis was reported to play a critical role in the pathogenesis of various cardiovascular diseases, e.g., atherosclerosis (AS), arrhythmia, heart failure, diabetic cardiomyopathy, and myocardial ischemia-reperfusion injury. Studies have identified dysfunctional iron metabolism and abnormal expression profiles of ferroptosis-related factors, including iron, GSH, GPX4, ferroportin (FPN), and SLC7A11 (xCT), as critical indicators for atherogenesis. Moreover, ferroptosis in plaque cells, i.e., vascular endothelial cell (VEC), macrophage, and vascular smooth muscle cell (VSMC), positively correlate with atherosclerotic plaque development. Many macromolecules, drugs, Chinese herbs, and food extracts can inhibit the atherogenic process by suppressing the ferroptosis of plaque cells. In contrast, some ferroptosis inducers have significant pro-atherogenic effects. However, the mechanisms through which ferroptosis affects the progression of AS still need to be well-known. This review summarizes the molecular mechanisms of ferroptosis and their emerging role in AS, aimed at providing novel, promising druggable targets for anti-AS therapy.


Asunto(s)
Aterosclerosis , Ferroptosis , Hiperaldosteronismo , Placa Aterosclerótica , Humanos , Glutatión , Hierro , Peroxidación de Lípido , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA