Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 81
1.
Nano Lett ; 23(18): 8385-8391, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37703459

We use in situ liquid secondary ion mass spectroscopy, cryogenic transmission electron microscopy, and density functional theory calculation to delineate the molecular process in the formation of the solid-electrolyte interphase (SEI) layer under the dynamic operating conditions. We discover that the onset potential for SEI layer formation and the thickness of the SEI show dependence on the solvation shell structure. On a Cu film anode, the SEI is noticed to start to form at around 2.0 V (nominal cell voltage) with a final thickness of about 40-50 nm in the 1.0 M LiPF6/EC-DMC electrolyte, while for the case of 1.0 M LiFSI/DME, the SEI starts to form at around 1.5 V with a final thickness of about 20 nm. Our observations clearly indicate the inner and outer SEI layer formation and dissipation upon charging and discharging, implying a continued evolution of electrolyte structure with extended cycling.

2.
Nat Commun ; 14(1): 6068, 2023 Sep 28.
Article En | MEDLINE | ID: mdl-37770428

Anisotropic and efficient transport of ions under external stimuli governs the operation and failure mechanisms of energy-conversion systems and microelectronics devices. However, fundamental understanding of ion hopping processes is impeded by the lack of atomically precise materials and probes that allow for the monitoring and control at the appropriate time- and length- scales. In this work, using in-situ transmission electron microscopy, we directly show that oxygen ion migration in vacancy ordered, semiconducting SrFeO2.5 epitaxial thin films can be guided to proceed through two distinctly different diffusion pathways, each resulting in different polymorphs of SrFeO2.75 with different ground electronic properties before reaching a fully oxidized, metallic SrFeO3 phase. The diffusion steps and reaction intermediates are revealed by means of ab-initio calculations. The principles of controlling oxygen diffusion pathways and reaction intermediates demonstrated here may advance the rational design of structurally ordered oxides for tailored applications and provide insights for developing devices with multiple states of regulation.

4.
Environ Sci Technol ; 57(15): 6273-6283, 2023 04 18.
Article En | MEDLINE | ID: mdl-37022139

Mixing states of aerosol particles are crucial for understanding the role of aerosols in influencing air quality and climate. However, a fundamental understanding of the complex mixing states is still lacking because most traditional analysis techniques only reveal bulk chemical and physical properties with limited surface and 3-D information. In this research, 3-D molecular imaging enabled by ToF-SIMS was used to elucidate the mixing states of PM2.5 samples obtained from a typical Beijing winter haze event. In light pollution cases, a thin organic layer covers separated inorganic particles; while in serious pollution cases, ion exchange and an organic-inorganic mixing surface on large-area particles were observed. The new results provide key 3-D molecular information of mixing states, which is highly potential for reducing uncertainty and bias in representing aerosol-cloud interactions in current Earth System Models and improving the understanding of aerosols on air quality and human health.


Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Beijing , Environmental Monitoring/methods , Air Pollution/analysis , Seasons , Aerosols/analysis , Molecular Imaging , China
5.
Front Chem ; 11: 1124229, 2023.
Article En | MEDLINE | ID: mdl-36923690

Composition analysis in wine is gaining increasing attention because it can provide information about the wine quality, source, and nutrition. In this work, in situ liquid secondary ion mass spectrometry (SIMS) was applied to 14 representative wines, including six wines manufactured by a manufacturer in Washington State, United States, four Cabernet Sauvignon wines, and four Chardonnay wines from other different manufacturers and locations. In situ liquid SIMS has the unique advantage of simultaneously examining both organic and inorganic compositions from liquid samples. Principal component analysis (PCA) of SIMS spectra showed that red and white wines can be clearly differentiated according to their aromatic and oxygen-contained organic species. Furthermore, the identities of different wines, especially the same variety of wines, can be enforced with a combination of both organic and inorganic species. Meanwhile, in situ liquid SIMS is sample-friendly, so liquid samples can be directly analyzed without any prior sample dilution or separation. Taken together, we demonstrate the great potential of in situ liquid SIMS in applications related to the molecular investigation of various liquid samples in food science.

6.
mSystems ; 7(6): e0091322, 2022 12 20.
Article En | MEDLINE | ID: mdl-36394319

Soil fungi facilitate the translocation of inorganic nutrients from soil minerals to other microorganisms and plants. This ability is particularly advantageous in impoverished soils because fungal mycelial networks can bridge otherwise spatially disconnected and inaccessible nutrient hot spots. However, the molecular mechanisms underlying fungal mineral weathering and transport through soil remains poorly understood primarily due to the lack of a platform for spatially resolved analysis of biotic-driven mineral weathering. Here, we addressed this knowledge gap by demonstrating a mineral-doped soil micromodel platform where mineral weathering mechanisms can be studied. We directly visualize acquisition and transport of inorganic nutrients from minerals through fungal hyphae in the micromodel using a multimodal imaging approach. We found that Fusarium sp. strain DS 682, a representative of common saprotrophic soil fungus, exhibited a mechanosensory response (thigmotropism) around obstacles and through pore spaces (~12 µm) in the presence of minerals. The fungus incorporated and translocated potassium (K) from K-rich mineral interfaces, as evidenced by visualization of mineral-derived nutrient transport and unique K chemical moieties following fungus-induced mineral weathering. Specific membrane transport proteins were expressed in the fungus in the presence of minerals, including those involved in oxidative phosphorylation pathways and the transmembrane transport of small-molecular-weight organic acids. This study establishes the significance of a spatial visualization platform for investigating microbial induced mineral weathering at microbially relevant scales. Moreover, we demonstrate the importance of fungal biology and nutrient translocation in maintaining fungal growth under water and carbon limitations in a reduced-complexity soil-like microenvironment. IMPORTANCE Fungal species are foundational members of soil microbiomes, where their contributions in accessing and transporting vital nutrients is key for community resilience. To date, the molecular mechanisms underlying fungal mineral weathering and nutrient translocation in low-nutrient environments remain poorly resolved due to the lack of a platform for spatial analysis of biotic weathering processes. Here, we addressed this knowledge gap by developing a mineral-doped soil micromodel platform. We demonstrate the function of this platform by directly probing fungal growth using spatially resolved optical and chemical imaging methodologies. We found the presence of minerals was required for fungal thigmotropism around obstacles and through soil-like pore spaces, and this was related to fungal transport of potassium (K) and corresponding K speciation from K-rich minerals. These findings provide new evidence and visualization into hyphal transport of mineral-derived nutrients under nutrient and water stresses.


Hyphae , Mycorrhizae , Hyphae/chemistry , Mycorrhizae/chemistry , Minerals/analysis , Potassium/analysis , Soil/chemistry
7.
Nat Mater ; 21(11): 1246-1251, 2022 Nov.
Article En | MEDLINE | ID: mdl-36175522

Manipulating the insulator-metal transition in strongly correlated materials has attracted a broad range of research activity due to its promising applications in, for example, memories, electrochromic windows and optical modulators1,2. Electric-field-controlled hydrogenation using ionic liquids3-6 and solid electrolytes7-9 is a useful strategy to obtain the insulator-metal transition with corresponding electron filling, but faces technical challenges for miniaturization due to the complicated device architecture. Here we demonstrate reversible electric-field control of nanoscale hydrogenation into VO2 with a tunable insulator-metal transition using a scanning probe. The Pt-coated probe serves as an efficient catalyst to split hydrogen molecules, while the positive-biased voltage accelerates hydrogen ions between the tip and sample surface to facilitate their incorporation, leading to non-volatile transformation from insulating VO2 into conducting HxVO2. Remarkably, a negative-biased voltage triggers dehydrogenation to restore the insulating VO2. This work demonstrates a local and reversible electric-field-controlled insulator-metal transition through hydrogen evolution and presents a versatile pathway to exploit multiple functional devices at the nanoscale.

8.
Nano Lett ; 22(13): 5530-5537, 2022 Jul 13.
Article En | MEDLINE | ID: mdl-35771509

Epitaxial growth is a powerful tool for synthesizing heterostructures and integrating multiple functionalities. However, interfacial mixing can readily occur and significantly modify the properties of layered structures, particularly for those containing energy storage materials with smaller cations. Here, we show a two-step sequence involving the growth of an epitaxial LiCoO2 cathode layer followed by the deposition of a binary transition metal oxide. Orientation-controlled epitaxial synthesis of the model solid-state-electrolyte Li2WO4 and anode material Li4Ti5O12 occurs as WO3 and TiO2 nucleate and react with Li ions from the underlying cathode. We demonstrate that this lithiation-assisted epitaxy approach can be used for energy materials discovery and exploring different combinations of epitaxial interfaces that can serve as well-defined model systems for mechanistic studies of energy storage and conversion processes.

9.
Biointerphases ; 17(3): 031006, 2022 06 23.
Article En | MEDLINE | ID: mdl-35738921

The plant growth-promoting rhizobacteria (PGPR) on the host plant surface play a key role in biological control and pathogenic response in plant functions and growth. However, it is difficult to elucidate the PGPR effect on plants. Such information is important in biomass production and conversion. Brachypodium distachyon (Brachypodium), a genomics model for bioenergy and native grasses, was selected as a C3 plant model; and the Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.) were chosen as representative PGPR strains. The PGPRs were introduced to the Brachypodium seed's awn prior to germination, and their possible effects on the seeding and growth were studied using different modes of time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements, including a high mass-resolution spectral collection and delayed image extraction. We observed key plant metabolic products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and auxin indole-3-acetic acid in the Brachypodium awns. Furthermore, principal component analysis and two-dimensional imaging analysis reveal that the Brachypodium awns are sensitive to the PGPR, leading to chemical composition and morphology changes on the awn surface. Our results show that ToF-SIMS can be an effective tool to probe cell-to-cell interactions at the biointerface. This work provides a new approach to studying the PGPR effects on awn and shows its potential for the research of plant growth in the future.


Brachypodium , Brachypodium/metabolism , Brachypodium/microbiology
10.
Nat Mater ; 21(7): 795-803, 2022 Jul.
Article En | MEDLINE | ID: mdl-35501365

Intercalation-type metal oxides are promising negative electrode materials for safe rechargeable lithium-ion batteries due to the reduced risk of Li plating at low voltages. Nevertheless, their lower energy and power density along with cycling instability remain bottlenecks for their implementation, especially for fast-charging applications. Here, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh g-1 at 20 mA g-1, and retains a capacity of 191 mAh g-1 at a high rate of 1 A g-1. It exhibits superb cycling stability with a capacity of 225 mAh g-1 at 200 mA g-1 for 400 cycles, and a Coulombic efficiency of 99.93%. We attribute the enhanced performance to the cubic rock-salt framework, which promotes low-energy migration paths. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials.

11.
J Environ Radioact ; 244-245: 106824, 2022 Apr.
Article En | MEDLINE | ID: mdl-35121278

Both granular activated carbon (GAC) and silver mordenite (AgM) are utilized for the removal of contaminants and radionuclides (e.g., radioiodine) from off-gas streams in nuclear fuel reprocessing and high temperature immobilization of nuclear waste. Following their service lifetimes, the GAC and AgM contain an inventory of contaminants and radionuclides and require stabilization in a matrix for disposal. GAC and AgM are referred to as solid secondary waste (SSW) materials. Cementitious waste forms can be used as the stabilization matrix for SSW, however, for successful stabilization, the inclusion of GAC and AgM should not negatively impact the physical behavior of the cementitious waste form or increase release of the contaminants/radionuclides compared to the baseline case without stabilization. The present work focuses on evaluation of cement formulations, with and without slag, for the stabilization of iodine-loaded GAC or AgM. The results showed that both a slag-containing and slag-free formulations were able to stabilize GAC and AgM, up to 30 vol%, without deleterious impacts on the bulk physical properties of the encapsulating matrix. When monolithic samples of the GAC or AgM containing cement formulations were subjected to leach tests, it was observed that iodide leached from the SSW) had limited sorption to either of the cement matrices. Nonetheless, the iodine can interact with the SSW materials themselves. Specifically, iodine retention within monolithic samples containing the iodine-loaded GAC or AgM was improved for AgM containing waste forms while no improvement was observed for the GAC containing waste forms. The improvement for the AgM containing waste forms was likely due to an enrichment of Ag at the interface between the AgM particles and the cement matrix that can impede iodine migration out from the waste form. The results are significant in highlighting the potential for long-term retention of iodine in specific cementitious waste forms.


Iodine , Radiation Monitoring , Aluminum Silicates , Charcoal , Iodides , Iodine Radioisotopes , Silver
12.
Analyst ; 146(19): 5855-5865, 2021 Sep 27.
Article En | MEDLINE | ID: mdl-34378550

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanisms by which plants associate with PGPR to elicit such beneficial effects need further study. Here, we present time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging of Brachypodium distachyon (Brachypodium) seeds with and without exposure to two model PGPR, i.e., Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.). Delayed image extraction was used to image PGPR-treated seed sections to reveal morphological changes. ToF-SIMS spectral comparison, principal component analysis (PCA), and two-dimensional (2D) imaging show that the selected PGPR have different effects on the host seed surface, resulting in changes in chemical composition and morphology. Metabolite products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and indole-3-acetic acid (IAA), were identified on the PGPR-treated seed surfaces. These compounds have different distributions on the Brachypodium seed surface for the two PGPR, indicating that the different bacteria elicit distinct responses from the host. Our results illustrate that ToF-SIMS is an effective tool to study plant-microbe interactions and to provide insightful information with submicrometer lateral resolution of the chemical distributions associated with morphological features, potentially offering a new way to study the mechanisms underlying beneficial roles of PGPR.


Brachypodium , Micrococcaceae , Molecular Imaging , Seeds
13.
J Phys Chem Lett ; 12(22): 5279-5285, 2021 Jun 10.
Article En | MEDLINE | ID: mdl-34061525

The chemisorption of an electrolyte species on electrode surfaces is ubiquitous and affects the dynamics and mechanism of various electrochemical reactions. Understanding of the chemical structure and property of the resulting electrical double layer is vital but limited. Herein, we operando probed the electrochemical interface between a gold electrode surface and a common electrolyte, phosphate buffer, using our newly developed in situ liquid secondary ion mass spectrometry. We surprisingly found that, on the positively charged gold electrode surface, sodium cations were anchored in the Stern layer in a partially dehydrated form by a formation of compact ion pairs with the accumulated phosphate anions. The resulting strong adsorption phase was further revealed to retard the electro-oxidation reaction of ascorbate. This finding addressed one major gap in the fundamental science of electrode-electrolyte interfaces, namely, where and how cations reside in the double layer to impose effects on electrochemical reactions, providing insights into the engineering of better electrochemical systems.

14.
J Am Chem Soc ; 143(14): 5540-5549, 2021 Apr 14.
Article En | MEDLINE | ID: mdl-33819019

Single-atom catalysts are often reported to have catalytic properties that surpass those of nanoparticles, while a direct comparison of sites common and different for both is lacking. Here we show that single atoms of Pt-group metals embedded into the surface of Fe3O4 have a greatly enhanced interaction strength with CO2 compared with the Fe3O4 surface. The strong CO2 adsorption on single Rh atoms and corresponding low activation energies lead to 2 orders of magnitude higher conversion rates of CO2 compared to Rh nanoparticles. This high activity of single atoms stems from the partially oxidic state imposed by their coordination to the support. Fe3O4-supported Rh nanoparticles follow the behavior of single atoms for CO2 interaction and reduction, which is attributed to the dominating role of partially oxidic sites at the Fe3O4-Rh interface. Thus, we show a likely common catalytic chemistry for two kinds of materials thought to be different, and we show that single atoms of Pt-group metals on Fe3O4 are especially successful materials for catalyzed reactions that depend primarily upon sites with the metal-O-Fe environment.

15.
Environ Sci Technol ; 55(10): 7123-7134, 2021 05 18.
Article En | MEDLINE | ID: mdl-33901397

Turnover of soil organic carbon (SOC) is strongly affected by a balance between mineral protection and microbial degradation. However, the mechanisms controlling the heterogeneous and preferential adsorption of different types of SOC remain elusive. In this work, the heterogeneous adsorption of humic substances (HSs) and microbial carbon (MC) on a clay mineral (nontronite NAu-2) during microbial-mediated Fe redox cycling was determined using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results revealed that HSs pre-adsorbed on NAu-2 would partially inhibit structural modification of NAu-2 by microbial Fe(III) reduction, thus retarding the subsequent adsorption of MC. In contrast, NAu-2 without precoated HSs adsorbed a significant amount of MC from microbial polysaccharides as a result of Fe(III) reduction. This was attributed to the deposition of a thin Al-rich layer on the clay surface, which provided active sites for MC adsorption. This study provides direct and detailed molecular evidence for the first time to explain the preferential adsorption of MC over HSs on the surface of clay minerals in iron redox processes, which could be critical for the preservation of MC in soil. The results also indicate that ToF-SIMS is a unique tool for understanding complex organic-mineral-microbe interactions.


Aluminum Silicates , Ferric Compounds , Adsorption , Carbon , Minerals , Oxidation-Reduction , Silicates , Soil , Spectrometry, Mass, Secondary Ion
16.
J Am Chem Soc ; 143(13): 5212-5221, 2021 Apr 07.
Article En | MEDLINE | ID: mdl-33759522

Heterostructures of three-dimensional (3D) halide perovskites are unstable because of facile anion interdiffusion at halide interfaces. Two-dimensional (2D) Ruddlesden-Popper halide perovskites (RPPs) show suppressed and anisotropic ion diffusion that could enable stable RPP heterostructures, yet the direct and general growth of lateral RPP heterostructures remains challenging. Here, we show that halide miscibility in RPPs decreases with perovskite layer thickness (n), enabling the formation of sharp halide lateral heterostructures from n = 1 and 2 RP lead iodide microplates via anion exchange with hydrogen bromide vapor. In contrast, RPPs with n ≥ 3 form more diffuse lateral heterojunctions, more similar to those in 3D perovskites. The anion exchange behaviors are further modulated by the spacer and A-site cations in the RPP structures. These new insights, and kinetic studies of the exchange reactions, enable the preparation of lateral heterostructures from various n = 2 RPPs that are more stable against anion interdiffusion and degradation for potential optoelectronic device applications.

17.
Sci Total Environ ; 765: 142675, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-33077208

There is limited knowledge about how microbiome develops along the geochemical and mineralogical change in onshore soils derived from continuous desiccation of lakes. In this study, geochemistry and mineralogy were studied in the Aral Sea onshore soils exposed in different periods (from the 1970s to 2018), followed by microbial analyses on the studied soils and the aboveground organs of dominant plants. The soils exhibited an increasing gradient of total soluble salts (TSS: 0.4-0.5 g/L to 71.3 g/L) and evaporite minerals (e.g., gypsum, halite) from the farshore to the nearshore. In the studied soils, microbial diversity decreased with increasing TSS, and microbial community dissimilarities among samples was positively correlated with the contents of gypsum and calcite minerals. Among the measured environmental variables, minerals contributed most to the observed microbial variation. In contrast, the endophytic microbial communities in the aboveground organs of dominant plants were not related to any of the measured variables, indicating that they differed from their soil counterparts with respect to their responses to geochemical and mineralogical variations in soils. In summary, these results help us understand the response of onshore soil microbiome to the decline of lake water caused by continuous desiccation.


Microbiota , Soil , Endophytes , Lakes , Minerals , Soil Microbiology
18.
Anal Chem ; 93(2): 1068-1075, 2021 Jan 19.
Article En | MEDLINE | ID: mdl-33284581

Understanding the structure and composition of aluminate complexes in extremely alkaline systems such as Bayer liquors has received enormous attention due to their fundamental and industrial importance. However, obtaining direct molecular information of the underlying ion-ion interactions using traditional approaches such as NMR spectroscopy or Raman spectroscopy is challenging due to the weakness of these interactions and/or their complex overlapping spectral signatures. Here, we exploit in situ liquid secondary-ion mass spectrometry (SIMS) as a new approach and show how it enables new insights. In contrast with traditional techniques, using SIMS we succeeded in acquiring information on dominant ion clusters in these alkaline systems. In Na+/K+ mixed alkaline aluminate solutions, we clearly observe preferential formation of Na+-anion clusters over K+-anion clusters. Evaluation of these clusters by density functional theory (DFT) calculations shows that these structures are stable and that their relative bond energies are consistent with their observed SIMS signal intensity differences. This demonstrates a key advantage of in situ liquid SIMS for overcoming ambiguities obscuring important information in these systems on constituent molecular clusters defined by relatively weak ion-pair competition and ion-solvent interactions.

19.
Anal Chem ; 92(20): 13785-13793, 2020 10 20.
Article En | MEDLINE | ID: mdl-32872776

Three-dimensional (3D) molecular imaging of biological structures is important for a wide range of research. In recent decades, secondary-ion mass spectrometry (SIMS) has been recognized as a powerful technique for both two-dimensional and 3D molecular imaging. Sample fixations (e.g., chemical fixation and cryogenic fixation methods) are necessary to adapt biological samples to the vacuum condition in the SIMS chamber, which has been demonstrated to be nontrivial and less controllable, thus limiting the wider application of SIMS on 3D molecular analysis of biological samples. Our group recently developed in situ liquid SIMS that offers great opportunities for the molecular study of various liquids and liquid interfaces. In this work, we demonstrate that a further development of the vacuum-compatible microfluidic device used in in situ liquid SIMS provides a convenient freeze-fixation of biological samples and leads to more controllable and convenient 3D molecular imaging. The special design of this new vacuum-compatible liquid chamber allows an easy determination of sputter rates of ice, which is critical for calibrating the depth scale of frozen biological samples. Sputter yield of a 20 keV Ar1800+ ion on ice has been determined as 1500 (±8%) water molecules per Ar1800+ ion, consistent with our results from molecular dynamics simulations. Moreover, using the information of ice sputter yield, we successfully conduct 3D molecular imaging of frozen homogenized milk and observe network structures of interesting organic and inorganic species. Taken together, our results will significantly benefit various research fields relying on 3D molecular imaging of biological structures.


Imaging, Three-Dimensional/methods , Lab-On-A-Chip Devices , Spectrometry, Mass, Secondary Ion , Animals , Freezing , Imaging, Three-Dimensional/instrumentation , Ions/chemistry , Milk/chemistry , Vacuum , Water/chemistry
20.
Anal Chem ; 92(15): 10402-10411, 2020 08 04.
Article En | MEDLINE | ID: mdl-32614167

Direct interspecies electron transfer (DIET) has been considered as a novel and highly efficient strategy in both natural anaerobic environments and artificial microbial fuel cells. A syntrophic model consisting of Geobacter metallireducens and Geobacter sulfurreducens was studied in this work. We conducted in vivo molecular mapping of the outer surface of the syntrophic community as the interface of nutrients and energy exchange. System for Analysis at the Liquid Vacuum Interface combined with time-of-flight secondary ion mass spectrometry was employed to capture the molecular distribution of syntrophic Geobacter communities in the living and hydrated state. Principal component analysis with selected peaks revealed that syntrophic Geobacter aggregates were well differentiated from other control samples, including syntrophic planktonic cells, pure cultured planktonic cells, and single population biofilms. Our in vivo imaging indicated that a unique molecular surface was formed. Specifically, aromatic amino acids, phosphatidylethanolamine components, and large water clusters were identified as key components that favored the DIET of syntrophic Geobacter aggregates. Moreover, the molecular changes in depths of the Geobacter aggregates were captured using dynamic depth profiling. Our findings shed new light on the interface components supporting electron transfer in syntrophic communities based on in vivo molecular imaging.


Amino Acids, Aromatic/metabolism , Geobacter/physiology , Mass Spectrometry/methods , Molecular Imaging/methods , Phosphatidylethanolamines/metabolism , Amino Acids, Aromatic/chemistry , Biofilms , Electron Transport , Phosphatidylethanolamines/chemistry , Principal Component Analysis , Water/chemistry , Water/metabolism
...