Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.660
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124993, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39159512

RESUMEN

BODIPY-based chemosensors are widely used owing to merits like good selectivity, high fluorescence quantum yield, and excellent optical stability. As such, a pH-switchable hydrophilic fluorescent probe, BODIPY-PY-(SO3Na)2, was developed for detection of Fe3+ ion in aqueous solutions. BODIPY-PY-(SO3Na)2 revealed strong fluorescence intensity and was responsive to pH value in the range of 6.59-1.96. Additionally, BODIPY-PY-(SO3Na)2 showed good selectivity and sensitivity towards Fe3+. A good linear relationship for Fe3+ detection was obtained from 0.0 µM to 50.0 µM with low detecting limit of 6.34 nM at pH 6.59 and 2.36 nM at pH 4.32, respectively. The response to pH and detection of Fe3+ induced obvious multicolor changes. BODIPY-PY-(SO3Na)2 can also be utilized to quantitatively detect Fe3+ in real water sample. Different mechanisms of Fe3+ detection at investigated pH values were unraveled through relativistic density functional theory (DFT) calculations in BODIPY-PY-(SO3Na)2 and experiments of coexisting cations, anions and molecules. These results enabled us to gain a deeper understanding of the interactions between BODIPY-PY-(SO3Na)2 and Fe3+ and provide valuable fundamental information for design of efficient multicolor chemosensors for Fe3+ as well.

2.
J Ethnopharmacol ; 336: 118724, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181283

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY: The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS: The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS: WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION: WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.


Asunto(s)
Diferenciación Celular , Medicamentos Herbarios Chinos , Endometriosis , Endometrio , Fibrosis , Células Madre Mesenquimatosas , Ratones Desnudos , Comunicación Paracrina , Endometriosis/tratamiento farmacológico , Endometriosis/patología , Endometriosis/metabolismo , Femenino , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina/efectos de los fármacos , Humanos , Diferenciación Celular/efectos de los fármacos , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Endometrio/patología , Ratones , Células Cultivadas , Adulto , Modelos Animales de Enfermedad
4.
Front Genet ; 15: 1382502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280093

RESUMEN

Background: The intricate relationship among gut microbiota, serum metabolites, and immunophenotypes may significantly impact myocarditis. However, direct causal links between these domains and myocarditis are not well understood. Methods: The study performed Mendelian randomization (MR) analysis using genetic data from public sources. Exposure data included 211 gut microbiota, 486 serum metabolites, and 731 immunophenotypes from Mibiogen, the Metabolomics GWAS server, and GWAS catalog databases. Single nucleotide polymorphisms (SNPs) were selected as instrumental variables based on established criteria. Myocarditis data from GWAS (427,911 participants, 24, 180, 570 SNPs) were used as the outcome variable. MR analysis was conducted using Inverse Variance Weighting (IVW), with Cochran's Q test for heterogeneity and Egger's intercept to assess horizontal pleiotropy. Results: 9 gut microbiota, 10 serum metabolites, and 2 immunophenotypes were negatively associated with myocarditis risk. In contrast, 5 gut microbiota, 12 serum metabolites, and 7 immunophenotypes were positively associated with myocarditis risk (all, P < 0.05). Sensitivity analyses confirmed the stability of these results. Conclusion: This MR study suggests that gut microbiota, serum metabolites, and immunophenotypes may causally influence myocarditis risk. These findings provide genetic evidence for myocarditis etiology and could inform future precision prevention and treatment strategies.

5.
Phytopathology ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283201

RESUMEN

Pine wilt disease (PWD) is caused by pine wood nematode (PWN, Bursaphelenchus xylophilus) and significantly impacts pine forest ecosystems globally. This study focuses on Pinus massoniana, an important timber and oleoresin resource in China, and is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors like bacteria, fungi, and environment, we established a reciprocal system between PWN and P. massoniana seedlings under aseptic conditions. Utilizing combined second and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post-PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 hours post-infection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in P. massoniana's response to PWN. This comprehensive transcriptome profiling offers insights into P. massoniana's intricate defense strategies against PWN under aseptic conditions laid a foundation for future functional analyses of key resistance genes.

6.
ACS Appl Mater Interfaces ; 16(37): 49660-49672, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39240784

RESUMEN

Atherosclerosis is a persistent inflammatory condition of the blood vessels associated with abnormalities in lipid metabolism. Development of biomimetic nanoplatforms provides an effective strategy. Herein, inspired by the peptide CLIKKPF spontaneously coupling to phosphatidylserine (PS) on the inner leaflet of cell membranes specifically, MM@NPs were constructed by macrophage membrane spontaneous encapsulation of cyclodextrin-based nanoparticles modified with the peptide CLIKKPF and loaded with the hydrophobic compound resveratrol. MM@NPs could be specifically phagocytized by the activated endothelium with the overexpressed VCAM-1 for enhancing target delivery into the pathological lesion. Additionally, for the ApoE-/- mice, MM@NPs provide comprehensive treatment efficiency in reducing oxidant stress, alleviating the inherent inflammation, and decreasing cholesterol deposition, subsequently resulting in the atherosclerotic plaque regression. Therefore, MM@NPs could be one possible candidate for improving lipid metabolism and inflammation in atherosclerosis.


Asunto(s)
Aterosclerosis , Ciclodextrinas , Inflamación , Metabolismo de los Lípidos , Macrófagos , Nanopartículas , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ciclodextrinas/química , Ciclodextrinas/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Metabolismo de los Lípidos/efectos de los fármacos , Nanopartículas/química , Células RAW 264.7 , Resveratrol/química , Resveratrol/farmacología , Nanomedicina , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Humanos
7.
Front Plant Sci ; 15: 1403226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290732

RESUMEN

Plant-associated microbial communities are crucial for plant growth and health. However, assembly mechanisms of microbial communities and microbial interaction patterns remain elusive across vary degrees of pathogen-induced diseases. By using 16S rRNA high-throughput sequencing technology, we investigated the impact of wildfire disease on the microbial composition and interaction network in plant three different compartments. The results showed that pathogen infection significantly affect the phyllosphere and rhizosphere microbial community. We found that the primary sources of microbial communities in healthy and mildly infected plants were from the phyllosphere and hydroponic solution community. Mutual exchanges between phyllosphere and rhizosphere communities were observed, but microbial species migration from the leaf to the root was rarely observed in severely infected plants. Moreover, wildfire disease reduced the diversity and network complexity of plant microbial communities. Interactions among pathogenic bacterial members suggested that Caulobacter and Bosea might be crucial "pathogen antagonists" inhibiting the spread of wildfire disease. Our study provides deep insights into plant pathoecology, which is helpful for the development of novel strategies for phyllosphere disease prediction or prevention.

9.
Ann Surg Treat Res ; 107(3): 127-135, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282099

RESUMEN

Purpose: This study was performed to compare the therapeutic efficacy of endoscopic surgery and open surgery and their effects on postoperative blood coagulation state in patients with thyroid cancer, and to provide evidence for the prevention measurement of thrombosis in the perioperative period. Methods: One hundred patients with thyroid cancer who received treatment in our hospital from January 2021 to December 2021, were randomly divided into an endoscopic group and an open surgery group, with 50 patients in each group. The patients in the open surgery group were treated by traditional open surgery, while patients in the endoscopic group accepted endoscopic surgery. The clinically therapeutic effect and blood coagulation of the 2 groups were compared. Results: Intraoperative blood loss and length of hospital stay were lower, and operative time was longer in the endoscopic group than in the open surgery group (P < 0.05). The 24-hour postoperative fibrinogen and D-dimer levels were higher in both groups than in the preoperative period, while PT was shorter (P < 0.05). There were no significant differences in postoperative complications and follow-up between the 2 groups (P > 0.05), but the incidence of complications, postoperative metastases, and thrombosis was relatively low in the endoscopic group. Conclusion: In the treatment of patients with thyroid cancer, endoscopic surgery has the advantages of less blood loss, fewer complications, and so on. Endoscopic and open surgery can lead to a hypercoagulable state, but the effect of endoscopic surgery is better than that of open surgery.

10.
Free Radic Biol Med ; 224: 554-563, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293609

RESUMEN

OBJECTIVE: To investigate the protective effect of lanthanum chloride on kidney injury in chronic kidney disease and its mechanism. METHODS: 1. Patients with CKD stage 2-5 were selected to analyze the effect of lanthanum-containing preparations on CKD. 2. Sixty healthy male Wistar rats were randomly divided into control group, model group, lanthanum chloride groups (0.03 ng/kg, 0.1 ng/kg, 0.3 ng/kg, q.3d., i.v.), and lanthanum carbonate group (0.3 g/kg, q.d., p.o.). The model group was given 2 % adenine suspension (200 mg/kg, q.d., p.o.) for the first two weeks, followed by adenine (200 mg/kg, b.i.d., p.o.) for 2 weeks, and all animals were sacrificed after eight weeks of administration. 3. The serum and kidneys of rats in each group were collected to detect the oxidative stress indicators and the expressions of LC3B-Ⅱ/Ⅰ, p62, Bcl-2, Bax, Caspase-3 and Cleaved Caspase-3. 4. Human renal tubular epithelial cells (HK-2 cells) were divided into control group, model group, lanthanum chloride group, pyrophosphate (PPI) group, chloroquine (CQ) group, rapamycin group, doxorubicin (DOX) group and N-acetyl-L-cysteine (NAC) group. The mitochondrial status, mitophagy and apoptosis levels were detected. RESULTS: 1.Lanthanum-containing preparations can significantly reduce the biochemical indexes of kidney injury in patients with CKD. 2. In the model group, the glomerular and renal tubular edema, the mitochondria were short and round, and the expression of LC3B-Ⅱ/Ⅰ and Bax increased, while the expression of P62, Bcl-2 and Caspase-3 decreased, and there was a significant improvement in the administration group, especially the 0.1 ng/kg group and lanthanum carbonate group. 3. In the HK-2 cell model group, mitochondrial membrane potential decreased, morphology changed and the results were reversed by lanthanum chloride. CONCLUSION: Lanthanum chloride may alter the morphology of nano-hydroxyapatite, thereby inhibiting its induced mitophagy and mitochondria-mediated apoptosis, and ultimately improve CKD renal injury effectively.

11.
Front Microbiol ; 15: 1471305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296284

RESUMEN

Citrus diseases caused by fungal pathogens drastically decreased the yield and quality of citrus fruits, leading to huge economic losses. Given the threats of chemical pesticides on the environment and human health, biocontrol agents have received considerable attention worldwide as ecofriendly and sustainable alternative to chemical fungicides. In the present study, we isolated a Bacillus velezensis strain TZ01 with potent antagonistic effect against three citrus pathogenic fungi: Diaporthe citri, Colletotrichum gloeosporioides and Alternaria alternata. The culture supernatant of this strain exhibited remarkable antifungal activity on potato dextrose agar plates and detached leaves of five citrus varieties. Treatment with TZ01 culture supernatant obviously affected the hyphal morphology and caused nucleic acid leakage. The crude lipopeptides (LPs) extracted from the culture supernatant were found as the major active ingredients, and could maintain the activity under a wide range of temperature and pH and ultraviolet radiation. Furthermore, the type of LPs, produced in vitro, were explored. Whole-genome sequencing of TZ01 revealed secondary metabolite gene clusters encoding synthetases for non-ribosomal peptides and polyketide production, and gene clusters responsible for the synthesis of three important LPs (surfactin, iturin, and fengycin) were identified in the genome. The liquid chromatography-mass spectrometry analysis confirmed the presence of various homologs of surfactin A, bacillomycin D, and fengycin A in the extracted LPs. Taken together, these results contribute to the possible biocontrol mechanisms of B. velezensis strain TZ01, as well as providing a promising new candidate strain as a biological control agent for controlling citrus fungal pathogens.

12.
Colloids Surf B Biointerfaces ; 245: 114261, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39317041

RESUMEN

Conventional hypotensive eye drops remain suboptimal for glaucoma management, primarily due to their limited intraocular bioavailability and the growing concern regarding ocular surface side effects. Therefore, there is an urgent need to develop innovative intraocular pressure (IOP)-lowering formulations that not only possess enhanced corneal penetration ability but also provide ocular surface protection. Herein, anti-oxidative mesoporous polydopamine nanoparticles (MPDA NPs) were explored as a nano-carrier for Brimonidine to address the above issues. Nearly monodisperse MPDA NPs with obvious nanopores were successfully prepared by template-removal method and used for encapsulation of Brimonidine benefiting from their high specific surface area. Interestingly, the PEGylated and drug loaded MPDA-PEG@Brim NPs showed a near neutral surface charge, which is expected to enhance intraocular drug delivery. Consequently, much higher concentration of Brimonidine in the aqueous humor was found after topical administration of MPDA-PEG@Brim nano-dispersion as compared to free Brimonidine solution. Accordingly, superior IOP reduction effect was achieved for the nano-formulation in both hypertensive and normotensive rat eyes. Moreover, MPDA-PEG NPs showed good capability in scavenging diverse free radicals, alleviating intracellular oxidative stress, and mitigating ocular surface oxidative level in a mouse model of preservative-induced dry eye. In addition, the excellent biosafety of this novel Brimonidine nanodrug was confirmed both in vitro and in vivo. Therefore, the present work may shed light on the development of next generation hypotensive formulations for extended ocular surface protection and glaucoma management.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39317770

RESUMEN

RATIONALE: Traumatic brain injury (TBI) is a critical condition associated with cognitive impairments, including dementia. This study is aimed to construct a long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network based on bioinformatics analysis and explore molecular mechanisms underlying post-TBI dementia. METHODS: GSE104687 and GSE205661 datasets were downloaded from Gene Expression Omnibus database. Molecular Signatures Database (MSigDB) was used to search oxidative stress-, metabolism- and immune-related genes as the target gene datasets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were carried out for functional annotation and enrichment analysis. A TBI mouse model was built to validate the expression of NF2, PLXNA2, NCBP2 and U2SURP in brain tissues. RESULTS: A total of 7 differentially expressed lncRNAs (DElncRNAs) and 191 DEmRNAs were obtained. Subsequent to differential expression (DE) analysis, a lncRNA-miRNA-mRNA network was established. Notably, 13 key DEmRNAs were identified, potentially playing pivotal roles in the pathogenesis of TBI-induced dementia. By comparing the target gene datasets with 13 DEmRNAs, we identified 4 target genes that overlap with the 13 DEGmRNAs, namely NF2, PLXNA2, NCBP2 and U2SURP. Functional enrichment analysis highlighted the involvement of neuronal projections in the dementia-enriched cluster, while the protective cluster showed associations with protein synthesis and ubiquitination pathways. Importantly, we explored potential drug interventions based on interactions with the above 4 target genes. Additionally, drug interaction prediction showed that NF2 could interact with SELUMETINIB, EVEROLIMUS and TEMSIROLIMUS. CONCLUSION: Our study provides insights into the complex regulatory networks underlying post-TBI dementia and suggests a potential role for three classes of drugs in managing dementia symptoms in TBI-induced dementia.

14.
Inorg Chem ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320923

RESUMEN

Advancing the compositional space of a compound class can result in intriguing superconductors, such as LaH10. Herein, we performed a comprehensive first-principles structural search on a binary B-C system with various chemical compositions. The identified diamond-like BC15, named d-BC15, is thermodynamically superior to the synthesized BC3 and BC5. Interestingly, d-BC15 shows anisotropic superconductivity resulting from three distinct Fermi surfaces. Its predicted critical temperature (Tc) is 43.6 K at ambient pressure, beyond the McMillan limit. d-BC15 reaches a maximum of around 75 K at 0.43% hole doping due to the substantially enhanced density of states at the Fermi level. Additionally, d-BC15 demonstrates superhard characteristics with a Vickers hardness of 75 GPa. The calculated tensile and shear stresses are 72 and 73 GPa, respectively. The combination of high superconductivity and superhardness in d-BC15 offers new insights into the design of multifunctional materials.

15.
Biomed Pharmacother ; 179: 117374, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217836

RESUMEN

Cardiovascular disease (CVD) has now become the leading cause of death worldwide, and its high morbidity and mortality rates pose a great threat to society. Although numerous studies have reported the pathophysiology of CVD, the exact pathogenesis of all types of CVD is not fully understood. Therefore, much more research is still needed to explore the pathogenesis of CVD. With the development of proteomics, many studies have successfully identified the role of posttranslational modifications in the pathogenesis of CVD, including key processes such as apoptosis, cell metabolism, and oxidative stress. In this review, we summarize the progress in the understanding of posttranslational modifications in cardiovascular diseases, including novel protein posttranslational modifications such as succinylation and nitrosylation. Furthermore, we summarize the currently identified histone deacetylase (HDAC) inhibitors used to treat CVD, providing new perspectives on CVD treatment modalities. We critically analyze the roles of posttranslational modifications in the pathogenesis of CVD-related diseases and explore future research directions related to posttranslational modifications in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Procesamiento Proteico-Postraduccional , Humanos , Enfermedades Cardiovasculares/metabolismo , Animales , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/farmacología , Estrés Oxidativo/fisiología
16.
Cell Signal ; 124: 111416, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293745

RESUMEN

BACKGROUND: The mechanisms underlying ferroptosis in heart failure (HF) remain incompletely understood. METHODS: This study analyzed the heart failure dataset from the Gene Expression Omnibus to identify differentially expressed ferroptosis-related genes (DFRGs). Key DFRGs were selected using LASSO regression and SVM-RFE machine learning techniques. Their diagnostic accuracy was evaluated via ROC curve analysis. Single-cell sequencing data, heart failure cell, and mouse models were utilized to validate these key DFRGs. Additionally, potential non-coding RNAs targeting these genes were predicted, and analyses for gene set enrichment, immune cell infiltration, and drug targeting were conducted. RESULTS: A total of 127 DFRGs were identified, with 83 downregulated and 44 upregulated compared to controls. Seven key DFRGs (PTGS2, BECN1, SLC39A14, QSOX1, MLST8, TMSB4X, KDM4A) were identified, showing high diagnostic accuracy (AUC 0.988) in the GSE5406 dataset. GO and KEGG analyses linked these genes to ferroptosis, FoxO signaling, and autophagy pathways. A ceRNA network identified 217 miRNAs and 243 lncRNAs potentially targeting these genes, and 64 drugs were predicted as potential targets. Single-cell sequencing and in vitro experiments revealed differential expression of SLC39A14 and QSOX1, which was further confirmed in vivo. CONCLUSION: This study provides novel insights into the role of ferroptosis in heart failure by identifying and validating DFRGs that exhibit differential expression across various cell types. The differential expression patterns of these genes, particularly SLC39A14 and QSOX1, indicate their potential involvement in the pathophysiological mechanisms contributing to HF. These findings offer new insights for the development of targeted therapies for HF.

17.
Chin J Integr Med ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331210

RESUMEN

OBJECTIVE: To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC). METHODS: The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms. RESULTS: Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3. CONCLUSION: Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.

18.
Vaccines (Basel) ; 12(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39340037

RESUMEN

Virus-like particles (VLPs) are non-infectious and serve as promising vaccine platforms because they mimic the membrane-embedded conformations of fusion glycoproteins on native viruses. Here, we employed SARS-CoV-2 VLPs (SMEN) presenting ancestral, Beta, or Omicron spikes to identify the variant spike that elicits potent and cross-protective immune responses in the highly sensitive K18-hACE2 challenge mouse model. A combined intranasal and intramuscular SMEN vaccine regimen generated the most effective immune responses to significantly reduce disease burden. Protection was primarily mediated by antibodies, with minor but distinct contributions from T cells in reducing virus spread and inflammation. Immunization with SMEN carrying ancestral spike resulted in 100, 75, or 0% protection against ancestral, Delta, or Beta variant-induced mortality, respectively. However, SMEN with an Omicron spike provided only limited protection against ancestral (50%), Delta (0%), and Beta (25%) challenges. By contrast, SMEN with Beta spikes offered 100% protection against the variants used in this study. Thus, the Beta variant not only overcame the immunity produced by other variants, but the Beta spike also elicited diverse and effective humoral immune responses. Our findings suggest that leveraging the Beta variant spike protein can enhance SARS-CoV-2 immunity, potentially leading to a more comprehensive vaccine against emerging variants.

19.
Small ; : e2405636, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340280

RESUMEN

The advancement of wireless gas sensing signifies a substantial leap forward in gas detection and intelligent monitoring technologies. This necessitates stringent design criteria for gas sensitive materials with good solution processability, conductivity, and porosity, whose design and synthesis remain challenging yet highly sought-after. Herein, the fabrication of NUS-8/polyaniline (PANI) nanosheets is presented with excellent solution processability, high porosity, triboelectric property, and superior electrical conductivity via a template-directed polymerization strategy. Solution processable NUS-8 nanosheets, synthesized directly by a "one-pot" approach, serve as templates to enhance the "on-site" polymerization of aniline, resulting in the formation of PANI layer on NUS-8 nanosheets with a thickness of 7 nm. The resultant NUS-8/PANI nanosheets exhibit outstanding solution processability, and a film conductivity of 8.6 S m-1. The solution processability enables the facile fabrication of homogeneous and compact NUS-8/PANI films and thus their integration onto electronic devices targeted for multifunctional sensing. The NUS-8/PANI coated sensors demonstrate sensitive and selective detection at room temperature toward ultratrace ammonia with a detection limit of 120 ppb. A wireless sensing system based on the NUS-8/PANI-coated sensor is capable to monitor the spoilage process of meat. This study paves novel avenues for designing and synthesizing gas-sensitive materials for practical applications.

20.
J Phys Chem Lett ; : 10162-10168, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348671

RESUMEN

The integration of optoelectronic devices with reservoir computing offers a novel and effective approach to in-sensor computing. This work presents a hybrid digital-physical solution that leverages the high-performance poly[(bithiophene)-alternate-(2,5-di(2-octyldodecyl)-3,6-di(thienyl)-pyrrolyl pyrrolidone)] (DPPT-TT) organic polymer-based photodiodes for the hardware implementation of reservoir computing system. The photodiodes demonstrate nonlinear photoelectric responses, fading memory, and cyclical stability, in relation to the temporal information on light stimuli. These attributes enable effective mapping, historical context sensitivity, and consistent performance, with time-encoded inputs, which are particularly essential for accurate and continuous processing of time series data. The optoelectronic reservoir computing system with pulse width modulation (PWM) coding demonstrates impressive performance in the prediction of chaotic sequences, achieving a normalized root-mean-square error as low as 0.095 with optimized parameters. The DPPT-TT-based photodiodes and time-based coding offer a hardware-efficient solution for reservoir computing, significantly advancing Internet of Things applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA