Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Anal Chim Acta ; 1287: 342070, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38182376

BACKGROUND: Early diagnosis of SARS-CoV-2 infection is still critical to control COVID-19 outbreak. Traditional polymerase chain reaction, enzyme-linked immunosorbent assay or lateral flow immunoassay performed poorly on detection times, sample preparation process and accuracy. Surface-enhanced Raman scattering (SERS)-based detection has emerged as a powerful analytical technique, which overcomes the above limitations. However, due to the near-field effect of traditional substrate, it is difficult to monitor the binding event of aptamers with proteins. It is obvious that a novel SERS substrate thatsupportedextended and stronger electromagnetic fields was required to hold long-range effects and allow for binding event testing. RESULTS: Driven by this challenge, we reported a long-range SERS-active substrate, which was built by inserting bowtie nanoaperture arrays in a refractive-index-symmetric environment and Au mirror surfaces, for SARS-CoV-2 protein binding event detection. Then, a double-π structure aptasensor was simply designed through the hybridization of spike (S) and nucleocapsid (N) proteins aptamers, and a corresponding complementary strand. This kind of double-π structure would dissociate when targets proteins S and N existed and led to the SERS responses decreased, which established the detection basis of our system. What's more, due to two Raman labels were involved, both proteins S and N can be sensed simultaneously. Our proposed method showed improved sensitivity with a low limit of detection for multiplex detection (1.6 × 10-16 g/mL for protein S and 1.0 × 10-16 g/mL for protein N) over a wide concentration range. SIGNIFICANCE: This represents the first long-range SERS apatasensor platform for detection of S and N proteins simultaneously. Our method showed high sensitivity, selectivity, reproducibility, stability and remarkable recoveries in human in saliva and serum samples, which is particularly important for the early diagnostics of COVID as well as for future unknown coronavirus.


COVID-19 , SARS-CoV-2 , Humans , Reproducibility of Results , COVID-19/diagnosis , Nucleocapsid , Electromagnetic Fields , Oligonucleotides
2.
Food Chem ; 439: 138110, 2024 May 01.
Article En | MEDLINE | ID: mdl-38043282

Triazole pesticides are widely used in modern agricultural practices to improve agricultural production quality. Simultaneously, unreasonable and standardized use of triazole pesticides could induce a series of potential diseases of humans. Surface-enhanced Raman spectroscopy has attracted enormous research attention because of its label-free and fingerprint detection capability to noninvasively trace extremely low concentration analytes. To the best of our knowledge, there is a lack of systematic comparison regarding the Raman spectral information of triazole pesticides in existing literatures. In this work, we successfully captured the characteristic peaks of six different triazole pesticides individually and simultaneously using Au decahedral nanoparticles. The proposed method exhibited remarkable detection sensitivity, a wide dynamic range, and the capability for in-situ detection of multiple pesticide residues on bean, apple, and vegetable surfaces with satisfactory recovery rates. Therefore, our proposed SERS platform have great applications in agricultural products safety, environmental monitoring and other fields.


Metal Nanoparticles , Pesticide Residues , Pesticides , Humans , Pesticide Residues/analysis , Fruit/chemistry , Vegetables/chemistry , Pesticides/analysis , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry
...