Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612079

RESUMEN

This study introduces an innovative method for synthesizing Cadmium Oxide /Cadmium Sulfide/Zinc Oxide heterostructures (CdO/CdS/ZnO), emphasizing their potential application in solar energy. Utilizing a combination of electrochemical deposition and oxygen annealing, the research provides a thorough analysis of the heterostructures through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) spectroscopy. The findings reveal a complex surface morphology and a composite structure with significant contributions from hexagonal CdS and cubic CdO phases. The study highlights the uniformity in the distribution of luminescent centers and the crystalline quality of the heterostructures, which is evident from the PL analysis. The redshift observed in the emission peak and the additional peaks in the excitation spectrum indicate intricate optical properties influenced by various factors, including quantum confinement and lattice strain. The research demonstrates these heterostructures' potential in enhancing solar cells' efficiency and applicability in optoelectronic devices. This comprehensive characterization and analysis pave the way for future optimization and application in efficient and sustainable solar energy solutions.

2.
Materials (Basel) ; 17(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38541545

RESUMEN

Undoped and Mg2+-doped ß-Ga2O3-20% In2O3 solid solution microcrystalline samples were synthesized using the high-temperature solid-state chemical reaction method to investigate the influence of native defects on structural, luminescent, and electrical properties. The synthesis process involved varying the oxygen partial pressure by synthesizing samples in either an oxygen or argon atmosphere. X-ray diffraction (XRD) analysis confirmed the monoclinic structure of the samples with the lattice parameters and unit cell volume fitting well to the general trends of the (Ga1-xInx)2O3 solid solution series. Broad emission spectra ranging from 1.5 to 3.5 eV were registered for all samples. Luminescence spectra showed violet, blue, and green emission elementary bands. The luminescence intensity was found to vary depending on the synthesis atmosphere. An argon synthesis atmosphere leads to increasing violet luminescence and decreasing green luminescence. Intense bands at about 4.5 and 5.0 eV and a low-intensity band at 3.3 eV are presented in the excitation spectra. The electrical conductivity of the samples was also determined depending on the synthesis atmosphere. The high-resistance samples obtained in an oxygen atmosphere exhibited activation energy of around 0.98 eV. Samples synthesized in an argon atmosphere demonstrated several orders of magnitude higher conductivity with an activation energy of 0.15 eV. The results suggest that the synthesis atmosphere is crucial in determining the luminescent and electrical properties of undoped ß-Ga2O3-In2O3 solid solution samples, offering the potential for various optoelectronic applications.

3.
Radiat Prot Dosimetry ; 199(15-16): 1696-1699, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819308

RESUMEN

The effect of application of filters, made of different materials and various thickness, is studied by Monte Carlo calculations using MCNP6.2 code. The calculated data were validated by experimental studies (benchmark tests). Experimental results obtained for YAlO3:Mn high-Z TL detectors irradiated to different standard ISO radiation qualities (X-ray series N-40, N-60, N-80, N-100, N-120, N-150 and N-200 as well as isotopic series S-Cs) modified by various metal (copper and aluminum) filters of thickness of 0.5, 0.8 and 1 mm. The experimental results are compared with results of Monte Carlo simulations done for the same 'radiation-attenuator-detector' combinations and geometry. Obtained results show good consistence between the experimental and calculated data that testifies adequacy of the used calculations and their applicability to modeling of modification of an output from the high-Z detectors exposed to photons of various energies.


Asunto(s)
Aluminio , Fotones , Rayos X , Radiografía , Método de Montecarlo , Radiometría
4.
Inorg Chem ; 62(31): 12434-12444, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498733

RESUMEN

A 0.25% iron (Fe3+)-doped LiGaO2 phosphor was synthesized by a high-temperature solid-state reaction method. The phosphor was characterized utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), high-pressure photoluminescence, and photoluminescence decay measurement techniques using diamond anvil cells (DACs). The powder X-ray analysis shows that the phosphor is a ß polymorph of LiGaO2 with an orthorhombic crystallographic structure at room temperature. The SEM result also confirms the presence of well-dispersed micro-rod-like structures throughout the sample. The photoluminescence studies in the near-infrared (NIR) range were performed at ambient, low-temperature, and high-pressure conditions. The synthesized phosphor exhibits a photoluminescence band around 746 nm related to the 4T1 → 6A1 transition with a 28% quantum efficiency at ambient conditions, which shifts toward longer wavelengths with the increase of pressure. The excitation spectra of Fe3+ are very well fitted with the Tanabe-Sugano crystal-field theory. The phosphor luminescence decays with a millisecond lifetime. The high-pressure application transforms the ß polymorph of LiGaO2 into a trigonal α structure at the pressure of about 3 GPa. Further increase of pressure quenches the Fe3+ luminescence due to the amorphization process of the material. The prepared phosphor exhibits also mechanoluminescence properties in the NIR spectral region.

5.
Materials (Basel) ; 16(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36837119

RESUMEN

The radiation-induced photoluminescence (PL) of LiF has found its way into many applications for the detection and imaging of ionizing radiation. In this work, the influence of thermal treatment at temperatures up to 400 °C on absorption and PL emission spectra as well as fluorescent nuclear tracks in irradiated LiF crystals was investigated. It was found that carrying out PL measurements with the crystals kept at the temperature of about 80 °C leads to a considerable increase in luminescence emission of F3+ color centers at 525 nm. This enhancement of PL intensity allows for the microscopic imaging of the fluorescent nuclear tracks using only F3+ emission, which is not possible at room temperature. It was also found that heating the irradiated crystals before measurement at temperatures from 100 °C to 200 °C increases the concentration of F3+ centers. However, the related enhancement of PL emission is insufficient in terms of enabling the observation of the fluorescent tracks in this part of the spectrum. In the case of the main PL emission at 670 nm related to F2 centers, the thermal treatment at around 290 °C substantially increases the intensity of fluorescent tracks. This effect, however, was found to occur only at low fluences of alpha particles (up to about 109 cm-2); therefore, it is barely visible in the emission spectrum and not noticeable in the absorption spectrum.

6.
Inorg Chem ; 61(45): 18135-18146, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36317268

RESUMEN

In this study, we carried out a detailed investigation of the photoluminescence of Mn4+ in Ga2O3-Al2O3 solid solutions as a function of the chemical composition, temperature, and hydrostatic pressure. For this purpose, a series of (Al1-xGax)2O3:Mn4+,Mg phosphors (x = 0, ..., 0.1.0) were synthesized and characterized for the first time. A detailed crystal structure analysis of the obtained materials was done by the powder X-ray diffraction technique. The results of the crystal structure and luminescence studies evidence the transformation of the ambient-pressure-synthesized material from the rhombohedral (α-type) to monoclinic (ß-type) phase as the Ga content exceeds 15%. Spectroscopic features of the Mn4+ deep-red emission, including the temperature-dependent emission efficiency and decay time, as well as the possibility of their tuning through chemical pressure in each of these two phases were examined. Additionally, it has been shown that the application of hydrostatic pressure of ≥19 GPa allows one to obtain a corundum-like α-Ga2O3:Mn4+ phase. The luminescence properties of this material were compared with ß-Ga2O3:Mn4+, which is normally synthesized at ambient pressure. Finally, we evaluated the possibility of application of the studied phosphor materials for low-temperature luminescence thermometry.

7.
J Phys Chem C Nanomater Interfaces ; 125(48): 26698-26710, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34925675

RESUMEN

The possibility of band gap engineering (BGE) in RAlO3 (R = Y, La, Gd, Yb, Lu) perovskites in the context of trap depths of intrinsic point defects was investigated comprehensively using experimental and theoretical approaches. The optical band gap of the materials, E g, was determined via both the absorption measurements in the VUV spectral range and the spectra of recombination luminescence excitation by synchrotron radiation. The experimentally observed effect of E g reduction from ∼8.5 to ∼5.5 eV in RAlO3 perovskites with increasing R3+ ionic radius was confirmed by the DFT electronic structure calculations performed for RMIIIO3 crystals (R = Lu, Y, La; MIII = Al, Ga, In). The possibility of BGE was also proved by the analysis of thermally stimulated luminescence (TSL) measured above room temperature for the far-red emitting (Y/Gd/La)AlO3:Mn4+ phosphors, which confirmed decreasing of the trap depths in the cation sequence Y → Gd → La. Calculations of the trap depths performed within the super cell approach for a number of intrinsic point defects and their complexes allowed recognizing specific trapping centers that can be responsible for the observed TSL. In particular, the electron traps of 1.33 and 1.43 eV (in YAlO3) were considered to be formed by the energy level of oxygen vacancy (VO) with different arrangement of neighboring YAl and VY, while shallower electron traps of 0.9-1.0 eV were related to the energy level of YAl antisite complexes with neighboring VO or (VO + VY). The effect of the lowering of electron trap depths in RAlO3 was demonstrated for the VO-related level of the (YAl + VO + VY) complex defect for the particular case of La substituting Y.

8.
Nanotechnology ; 30(45): 455101, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31362276

RESUMEN

Zinc-based nanoparticles are promising materials for various applications, including in biomedicine. The aim of our study was to determine the effect of fluorescent europium-doped zinc oxide nanoparticles (ZnO:Eu NPs) on sperm parameters, cell apoptosis and integrity of the blood-testis barrier (BTB) in mice. Nanostructures were orally administered to adult mice (n = 34). Animals were sacrificed after 3 h, 24 h, 7 d and 14 d following oral administration. Sperm was collected and analysed for viability and kinetic parameters. Collected testes were quantitatively analysed for accumulation of ZnO:Eu NPs. Microscopic evaluation based on immunofluorescence and histopathological studies were also conducted. Results showed that ZnO:Eu NPs were able to overcome the BTB with their subsequent accumulation in the testis. No toxic or pro-apoptotic effects of nanoparticles on the male reproductive system were observed. The results suggested that ZnO:Eu NPs were able to accumulate in the testis with no negative impact on sperm parameters, tissue architecture or the integrity of the BTB.


Asunto(s)
Barrera Hematotesticular/efectos de los fármacos , Espermatozoides/citología , Óxido de Zinc/administración & dosificación , Administración Oral , Animales , Apoptosis , Europio/administración & dosificación , Europio/química , Masculino , Ratones , Nanopartículas , Espermatozoides/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/farmacología
9.
Sci Rep ; 9(1): 9544, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266967

RESUMEN

Zinc gallate (ZnGa2O4) spinel ceramics doped with Mn2+ ions was prepared by a solid-state reaction at 1200 °C in air. Manganese concentration was equal to 0.05 mol.% of MnO with respect to ZnO. Ceramics produced in this way show an efficient green emission at about 505 nm under UV or X-ray excitations, which is caused by Mn2+ ions. This green emission is observed also as a relatively long afterglow (visible to the naked eye in the dark for about one hour) after switching-off the X-ray excitation. Time profiles of the beginning of glow and afterglow have been studied together with thermally stimulated (TSL) and optically stimulated (OSL) luminescence. Experimental results demonstrate a presence of few types of shallow and deep traps responsible for the observed afterglow and TSL/OSL emission of the material. The possibility of pulsed optical stimulation and time-resolved OSL characteristics of ZnGa2O4: Mn2+ has been reported for the first time. The presented results suggest the ZnGa2O4: Mn2+ spinel as a promising material for further fundamental research and possibility of application as a green long-lasting phosphor or storage phosphor for TSL/OSL radiation dosimetry.

11.
Inorg Chem ; 58(9): 5617-5629, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30998007

RESUMEN

We report detailed optical studies of BaWO4:Ce and BaWO4:Ce,Na single crystals. The material does not emit any luminescence at ambient pressure under near-UV (325 nm) excitation. Efficient green light is emitted only at high pressure (HP) and low temperature (LT). The luminescence is of excitonic character, since the lowest Ce3+ 5d level is degenerate with the conduction band also under hydrostatic pressures. To explain these phenomena, absorption measurements were made together with powder X-ray diffraction (XRD) and confocal micro-Raman and Fourier transform infrared (FTIR) spectroscopy. Raman experiments confirm the existence of a metastable phase, induced by certain nonhydrostatic conditions, before the reversible transition at a high-pressure range above 9 GPa, where efficient photoluminescence (PL) occurs. Although the phase transition is reversible, it proceeds with a prominent hysteresis observed in luminescence and Raman experiments. FTIR focuses on the existence of Ce3+ multisites observed during LT measurements.

12.
J Phys Chem A ; 123(18): 4021-4033, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31013085

RESUMEN

We demonstrate a potential optical thermometric material, Pr3+-doped triple-layered perovskite Na2La2Ti3O10 microcrystals, which promises a remarkable performance in temperature sensing over a wide temperature range (125-533 K), with a maximum relative sensitivity of 2.43% K-1 at 423 K. Both temperature and high-pressure dependent photoluminescence measurements were performed for this compound. It turns out that the Pr3+-Ti4+ intervalence charge transfer state is the primary cause for the very efficient thermometric characteristics in the 296-533 K range. In the 125-300 K range, 3P1 and 3P0 levels of Pr3+ can be exploited as thermally coupled energy levels for temperature sensing with high sensitivity at and below room temperature. A significant enhancement of the Pr3+ ions' luminescence observed in the 4.5-300 K range is ascribed to an efficient, thermally activated energy transfer process from the host to Pr3+ ions. Carrier recombination on Pr3+ related hole traps was proposed in the studied system. The thermoluminescence properties are investigated, and possible mechanisms for the interpretation of the experimental results are discussed as well. This work may provide a perspective approach to design a high-performance, self-calibrated optical thermometer operating over a wide temperature range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...