Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Nat Commun ; 14(1): 7637, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37993439

Molecular markers of autoimmunity, such as antibodies to citrullinated protein antigens (ACPA), are detectable prior to inflammatory arthritis (IA) in rheumatoid arthritis (RA) and may define a state that is 'at-risk' for future RA. Here we present a cross-sectional comparative analysis among three groups that include ACPA positive individuals without IA (At-Risk), ACPA negative individuals and individuals with early, ACPA positive clinical RA (Early RA). Differential methylation analysis among the groups identifies non-specific dysregulation in peripheral B, memory and naïve T cells in At-Risk participants, with more specific immunological pathway abnormalities in Early RA. Tetramer studies show increased abundance of T cells recognizing citrullinated (cit) epitopes in At-Risk participants, including expansion of T cells reactive to citrullinated cartilage intermediate layer protein I (cit-CILP); these T cells have Th1, Th17, and T stem cell memory-like phenotypes. Antibody-antigen array analyses show that antibodies targeting cit-clusterin, cit-fibrinogen and cit-histone H4 are elevated in At-Risk and Early RA participants, with the highest levels of antibodies detected in those with Early RA. These findings indicate that an ACPA positive at-risk state is associated with multifaceted immune dysregulation that may represent a potential opportunity for targeted intervention.


Arthritis, Rheumatoid , Autoantibodies , Humans , Cross-Sectional Studies , Epitopes
2.
Am J Pathol ; 193(7): 995-1004, 2023 07.
Article En | MEDLINE | ID: mdl-37146966

Early detection and treatment of melanoma, the most aggressive skin cancer, improves the median 5-year survival rate of patients from 25% to 99%. Melanoma development involves a stepwise process during which genetic changes drive histologic alterations within nevi and surrounding tissue. Herein, a comprehensive analysis of publicly available gene expression data sets of melanoma, common or congenital nevi (CN), and dysplastic nevi (DN), assessed molecular and genetic pathways leading to early melanoma. The results demonstrate several pathways reflective of ongoing local structural tissue remodeling activity likely involved during the transition from benign to early-stage melanoma. These processes include the gene expression of cancer-associated fibroblasts, collagens, extracellular matrix, and integrins, which assist early melanoma development and the immune surveillance that plays a substantial role at this early stage. Furthermore, genes up-regulated in DN were also overexpressed in melanoma tissue, supporting the notion that DN may serve as a transitional phase toward oncogenesis. CN collected from healthy individuals exhibited different gene signatures compared with histologically benign nevi tissue located adjacent to melanoma (adjacent nevi). Finally, the expression profile of microdissected adjacent nevi tissue was more similar to melanoma compared with CN, revealing the melanoma influence on this annexed tissue.


Dysplastic Nevus Syndrome , Melanoma , Nevus , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/pathology , Nevus/genetics , Nevus/pathology , Skin Neoplasms/pathology , Dysplastic Nevus Syndrome/genetics , Dysplastic Nevus Syndrome/metabolism , Dysplastic Nevus Syndrome/pathology , Gene Expression Profiling
4.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article En | MEDLINE | ID: mdl-36901697

Malignant mesothelioma (MESO) consists of epithelioid, biphasic, and sarcomatoid subtypes with different epithelial-mesenchymal transition (EMT) phenotypes. We previously identified a panel of four MESO EMT genes correlating with an immunosuppressive tumor microenvironment and poor survival. In this study, we investigated the correlation between these MESO EMT genes, the immune profile, and the genomic and epigenomic alterations to identify potential therapeutic targets to prevent or reverse the EMT process. Using multiomic analysis, we observed that the MESO EMT genes were positively correlated with hypermethylation of epigenetic genes and loss of CDKN2A/B expression. MESO EMT genes such as COL5A2, ITGAV, SERPINH1, CALD1, SPARC, and ACTA2 were associated with upregulation of TGF-ß signaling, hedgehog signaling, and IL-2-STAT5 signaling and downregulation of the IFN-α and IFN-γ response. Immune checkpoints such as CTLA4, CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1 (PD-1), and TIGIT were upregulated, while LAG3, LGALS9, and VTCN1 were downregulated with the expression of MESO EMT genes. CD160, KIR2DL1, and KIR2DL3 were also broadly downregulated with the expression of MESO EMT genes. In conclusion, we observed that the expression of a panel of MESO EMT genes was associated with hypermethylation of epigenetic genes and loss of expression of CDKN2A and CDKN2B. Expression of MESO EMT genes was associated with downregulation of the type I and type II IFN response, loss of cytotoxicity and NK cell activity, and upregulation of specific immune checkpoints, as well as upregulation of the TGF-ß1/TGFBR1 pathway.


Mesothelioma, Malignant , Mesothelioma , Humans , Epithelial-Mesenchymal Transition/genetics , Hedgehog Proteins , Mesothelioma/pathology , Prognosis , Tumor Microenvironment , Interferons
5.
Proc Natl Acad Sci U S A ; 120(9): e2210836120, 2023 02 28.
Article En | MEDLINE | ID: mdl-36821580

Defining the ontogeny of tumor-associated macrophages (TAM) is important to develop therapeutic targets for mesothelioma. We identified two distinct macrophage populations in mouse peritoneal and pleural cavities, the monocyte-derived, small peritoneal/pleural macrophages (SPM), and the tissue-resident large peritoneal/pleural macrophages (LPM). SPM rapidly increased in tumor microenvironment after tumor challenge and contributed to the vast majority of M2-like TAM. The selective depletion of M2-like TAM by conditional deletion of the Dicer1 gene in myeloid cells (D-/-) promoted tumor rejection. Sorted SPM M2-like TAM initiated tumorigenesis in vivo and in vitro, confirming their capacity to support tumor development. The transcriptomic and single-cell RNA sequencing analysis demonstrated that both SPM and LPM contributed to the tumor microenvironment by promoting the IL-2-STAT5 signaling pathway, inflammation, and epithelial-mesenchymal transition. However, while SPM preferentially activated the KRAS and TNF-α/NFkB signaling pathways, LPM activated the IFN-γ response. The importance of LPM in the immune response was confirmed by depleting LPM with intrapleural clodronate liposomes, which abrogated the antitumoral memory immunity. SPM gene signature could be identified in pleural effusion and tumor from patients with untreated mesothelioma. Five genes, TREM2, STAB1, LAIR1, GPNMB, and MARCO, could potentially be specific therapeutic targets. Accordingly, Trem2 gene deletion led to reduced SPM M2-like TAM with compensatory increase in LPM and slower tumor growth. Overall, these experiments demonstrate that SPM M2-like TAM play a key role in mesothelioma development, while LPM more specifically contribute to the immune response. Therefore, selective targeting of monocyte-derived TAM may enhance antitumor immunity through compensatory expansion of tissue-resident TAM.


Mesothelioma, Malignant , Mesothelioma , Animals , Mice , Mesothelioma, Malignant/metabolism , Mesothelioma, Malignant/pathology , Tumor-Associated Macrophages/pathology , Macrophages/metabolism , Mesothelioma/metabolism , Monocytes/pathology , Tumor Microenvironment , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Cell Adhesion Molecules, Neuronal/metabolism
6.
Ann Rheum Dis ; 82(3): 357-364, 2023 03.
Article En | MEDLINE | ID: mdl-36241361

OBJECTIVES: Myeloablative autologous haematopoietic stem cell transplant (HSCT) was recently demonstrated to provide significant benefit over cyclophosphamide (CYC) in the treatment of diffuse cutaneous systemic sclerosis (dcSSc) in the Scleroderma: Cyclophosphamide or Transplantation (SCOT) trial. As dysregulation of the B cell compartment has previously been described in dcSSc, we sought to gain insight into the effects of myeloablative autologous HSCT as compared with CYC. METHODS: We sequenced the peripheral blood immunoglobulin heavy chain (IGH) repertoires in patients with dcSSc enrolled in the SCOT trial. RESULTS: Myeloablative autologous HSCT was associated with a sustained increase in IgM isotype antibodies bearing a low mutation rate. Clonal expression was reduced in IGH repertoires following myeloablative autologous HSCT. Additionally, we identified a underusage of immunoglobulin heavy chain V gene 5-51 in patients with dcSSc, and usage normalised following myeloablative autologous HSCT but not CYC treatment. CONCLUSIONS: Together, these findings suggest that myeloablative autologous HSCT resets the IGH repertoire to a more naïve state characterised by IgM-expressing B cells, providing a possible mechanism for the elimination of pathogenic B cells that may contribute to the benefit of HSCT over CYC in the treatment of dcSSc.


Hematopoietic Stem Cell Transplantation , Scleroderma, Diffuse , Scleroderma, Systemic , Humans , Scleroderma, Systemic/surgery , Scleroderma, Systemic/pathology , Cyclophosphamide/therapeutic use , Scleroderma, Diffuse/therapy , Transplantation, Autologous , Immunoglobulin Heavy Chains/genetics
7.
Clin Immunol ; 244: 109117, 2022 Nov.
Article En | MEDLINE | ID: mdl-36109004

OBJECTIVE: Mast cells in the osteoarthritis (OA) synovium correlate with disease severity. This study aimed to further elucidate the role of mast cells in OA by RNA-Seq analysis and pharmacological blockade of the activity of histamine, a key mast cell mediator, in murine OA. METHODS: We examined OA synovial tissues and fluids by flow cytometry, immunostaining, single-cell and bulk RNA-Seq, qPCR, and ELISA. Cetirizine, a histamine H1 receptor (H1R) antagonist, was used to treat the destabilization of the medial meniscus (DMM) mouse model of OA. RESULTS: Flow cytometry and immunohistology analysis of OA synovial cells revealed KIT+ FcεRI+ and TPSAB1+ mast cells. Single-cell RNA-Seq of OA synovial cells identified the expression of prototypical mast cell markers KIT, TPSAB1, CPA3 and HDC, as well as distinctive markers HPGD, CAVIN2, IL1RL1, PRG2, and CKLF, confirmed by bulk RNA-Seq and qPCR. A mast cell prototypical marker expression score classified 40 OA patients into three synovial pathotypes: mast cell-high, -medium, and -low. Additionally, we detected mast cell mediators including histamine, tryptase AB1, CPA3, PRG2, CAVIN2, and CKLF in OA synovial fluids. Elevated H1R expression was detected in human OA synovium, and treatment of mice with the H1 receptor antagonist cetirizine reduced the severity and OA-related mediators in DMM. CONCLUSION: Based on differential expression of prototypical and distinct mast cell markers, human OA joints can be stratified into mast cell-high, -medium, and -low synovial tissue pathotypes. Pharmacologic blockade of histamine activity holds the potential to improve OA disease outcome.


Arthritis, Rheumatoid , Osteoarthritis , Animals , Arthritis, Rheumatoid/metabolism , Cetirizine , Histamine/analysis , Histamine/metabolism , Histamine/pharmacology , Humans , Interleukin-1 Receptor-Like 1 Protein/metabolism , Mast Cells , Mice , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , RNA-Seq , Receptors, Histamine H1/metabolism , Synovial Membrane/metabolism , Tryptases/metabolism , Tryptases/pharmacology
8.
Clin Immunol ; 237: 108963, 2022 04.
Article En | MEDLINE | ID: mdl-35259543

Convalescent coronavirus disease 2019 (COVID-19) subjects who receive BNT162b2 develop robust antibody responses against SARS-CoV-2. However, our understanding of the clonal B cell response pre- and post-vaccination in such individuals is limited. Here we characterized B cell phenotypes and the BCR repertoire after BNT162b2 immunization in two convalescent COVID-19 subjects. BNT162b2 stimulated many B cell clones that were under-represented during SARS-CoV-2 infection. In addition, the vaccine generated B cell clusters with >65% similarity in CDR3 VH and VL region consensus sequences both within and between subjects. This result suggests that the CDR3 region plays a dominant role adjacent to heavy and light chain V/J pairing in the recognition of the SARS-CoV-2 spike protein. Antigen-specific B cell populations with homology to published SARS-CoV-2 antibody sequences from the CoV-AbDab database were observed in both subjects. These results point towards the development of convergent antibody responses against the virus in different individuals.


Antibodies, Viral , BNT162 Vaccine , COVID-19 , Complementarity Determining Regions , Antibodies, Viral/immunology , Antibody Formation , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Complementarity Determining Regions/genetics , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
9.
J Immunol ; 207(10): 2581-2588, 2021 11 15.
Article En | MEDLINE | ID: mdl-34607939

SARS-CoV-2 is a respiratory pathogen that can cause severe disease in at-risk populations but results in asymptomatic infections or a mild course of disease in the majority of cases. We report the identification of SARS-CoV-2-reactive B cells in human tonsillar tissue obtained from children who were negative for coronavirus disease 2019 prior to the pandemic and the generation of mAbs recognizing the SARS-CoV-2 Spike protein from these B cells. These Abs showed reduced binding to Spike proteins of SARS-CoV-2 variants and did not recognize Spike proteins of endemic coronaviruses, but subsets reacted with commensal microbiota and exhibited SARS-CoV-2-neutralizing potential. Our study demonstrates pre-existing SARS-CoV-2-reactive Abs in various B cell populations in the upper respiratory tract lymphoid tissue that may lead to the rapid engagement of the pathogen and contribute to prevent manifestations of symptomatic or severe disease.


Adenoids/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Mucous Membrane/immunology , Receptors, Antigen, B-Cell/genetics , Respiratory System/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Child , HEK293 Cells , Humans , Immunologic Memory , Lymphocyte Activation , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
10.
PLoS Genet ; 16(9): e1009010, 2020 09.
Article En | MEDLINE | ID: mdl-32956375

Essential tremor (ET) is the most common adult-onset movement disorder. In the present study, we performed whole exome sequencing of a large ET-affected family (10 affected and 6 un-affected family members) and identified a TUB p.V431I variant (rs75594955) segregating in a manner consistent with autosomal-dominant inheritance. Subsequent targeted re-sequencing of TUB in 820 unrelated individuals with sporadic ET and 630 controls revealed significant enrichment of rare nonsynonymous TUB variants (e.g. rs75594955: p.V431I, rs1241709665: p.Ile20Phe, rs55648406: p.Arg49Gln) in the ET cohort (SKAT-O test p-value = 6.20e-08). TUB encodes a transcription factor predominantly expressed in neuronal cells and has been previously implicated in obesity. ChIP-seq analyses of the TUB transcription factor across different regions of the mouse brain revealed that TUB regulates the pathways responsible for neurotransmitter production as well thyroid hormone signaling. Together, these results support the association of rare variants in TUB with ET.


Adaptor Proteins, Signal Transducing/genetics , Essential Tremor/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Aged, 80 and over , Animals , Chromatin Immunoprecipitation Sequencing/methods , Cohort Studies , Exome/genetics , Family , Female , Humans , Male , Mice, Inbred C57BL , Middle Aged , Pedigree , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , Exome Sequencing/methods
11.
Front Immunol ; 11: 626820, 2020.
Article En | MEDLINE | ID: mdl-33658999

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by B cell dysregulation and breaks in tolerance that lead to the production of pathogenic autoantibodies. We performed single-cell RNA sequencing of B cells from healthy donors and individuals with SLE which revealed upregulated CD52 expression in SLE patients. We further demonstrate that SLE patients exhibit significantly increased levels of B cell surface CD52 expression and plasma soluble CD52, and levels of soluble CD52 positively correlate with measures of lupus disease activity. Using CD52-deficient JeKo-1 cells, we show that cells lacking surface CD52 expression are hyperresponsive to B cell receptor (BCR) signaling, suggesting an inhibitory role for the surface-bound protein. In healthy donor B cells, antigen-specific BCR-activation initiated CD52 cleavage in a phospholipase C dependent manner, significantly reducing cell surface levels. Experiments with recombinant CD52-Fc showed that soluble CD52 inhibits BCR signaling in a manner partially-dependent on Siglec-10. Moreover, incubation of unstimulated B cells with CD52-Fc resulted in the reduction of surface immunoglobulin and CXCR5. Prolonged incubation of B cells with CD52 resulted in the expansion of IgD+IgMlo anergic B cells. In summary, our findings suggest that CD52 functions as a homeostatic protein on B cells, by inhibiting responses to BCR signaling. Further, our data demonstrate that CD52 is cleaved from the B cell surface upon antigen engagement, and can suppress B cell function in an autocrine and paracrine manner. We propose that increased expression of CD52 by B cells in SLE represents a homeostatic mechanism to suppress B cell hyperactivity.


Autoantibodies/blood , B-Lymphocytes/immunology , CD52 Antigen/immunology , Lupus Erythematosus, Systemic/immunology , Receptors, Antigen, B-Cell/metabolism , B-Lymphocytes/metabolism , CD52 Antigen/blood , CD52 Antigen/metabolism , Chemokine CXCL13/metabolism , Gene Expression Regulation/immunology , Genes, MHC Class II/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/physiopathology , RNA-Seq , Receptors, CXCR5/metabolism , Severity of Illness Index , Signal Transduction/immunology , Single-Cell Analysis , Type C Phospholipases/metabolism
12.
BMC Bioinformatics ; 20(1): 42, 2019 Jan 21.
Article En | MEDLINE | ID: mdl-30665349

BACKGROUND: We introduce BPG, a framework for generating publication-quality, highly-customizable plots in the R statistical environment. RESULTS: This open-source package includes multiple methods of displaying high-dimensional datasets and facilitates generation of complex multi-panel figures, making it suitable for complex datasets. A web-based interactive tool allows online figure customization, from which R code can be downloaded for integration with computational pipelines. CONCLUSION: BPG provides a new approach for linking interactive and scripted data visualization and is available at http://labs.oicr.on.ca/boutros-lab/software/bpg or via CRAN at https://cran.r-project.org/web/packages/BoutrosLab.plotting.general.


Data Analysis , Simulation Training/methods , Humans , Software
13.
Biol Methods Protoc ; 3(1): bpy005, 2018.
Article En | MEDLINE | ID: mdl-32161799

PCR-based techniques are widely used to identify disease causing bacterial and viral pathogens, especially in point-of-care or near-patient clinical settings that require rapid results and sample-to-answer workflows. However, such techniques often fail to differentiate between closely related species that have highly variable genomes. Here, a homogenous (closed-tube) pathogen identification and classification method is described that combines PCR amplification, array-based amplicon sequence verification, and real-time detection using an inverse fluorescence fluorescence-resonance energy transfer technique. The amplification is designed to satisfy the inclusivity criteria and create ssDNA amplicons, bearing a nonradiating quencher moiety at the 5'-terminus, for all the related species. The array includes fluorescent-labeled probes which preferentially capture the variants of the amplicons and classify them through solid-phase thermal denaturing (melt curve) analysis. Systematic primer and probe design algorithms and empirical validation methods are presented and successfully applied to the challenging example of identification of, and differentiation between, closely related human rhinovirus and human enterovirus strains.

14.
Article En | MEDLINE | ID: mdl-29092958

Progressive pseudorheumatoid dysplasia (PPD) is a skeletal dysplasia characterized by predominant involvement of articular cartilage with progressive joint stiffness. Here we report genetic characterization of a consanguineous family segregating an uncharacterized from of skeletal dysplasia. Whole-exome sequencing of four affected siblings and their parents identified a loss-of-function homozygous mutation in the WISP3 gene, leading to diagnosis of PPD in the affected individuals. The identified variant (Chr6: 112382301; WISP3:c.156C>A p.Cys52*) is rare and predicted to cause premature termination of the WISP3 protein.


CCN Intercellular Signaling Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Joint Diseases/genetics , Mutation/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Male , Pedigree , Phenotype , Exome Sequencing
15.
NPJ Genom Med ; 2: 34, 2017.
Article En | MEDLINE | ID: mdl-29263843

Genomic characterization of circulating tumor cells (CTCs) may prove useful as a surrogate for conventional tissue biopsies. This is particularly important as studies have shown different mutational profiles between CTCs and ctDNA in some tumor subtypes. However, isolating rare CTCs from whole blood has significant hurdles. Very limited DNA quantities often can't meet NGS requirements without whole genome amplification (WGA). Moreover, white blood cells (WBC) germline contamination may confound CTC somatic mutation analyses. Thus, a good CTC enrichment platform with an efficient WGA and NGS workflow are needed. Here, Vortex label-free CTC enrichment platform was used to capture CTCs. DNA extraction was optimized, WGA evaluated and targeted NGS tested. We used metastatic colorectal cancer (CRC) as the clinical target, HCT116 as the corresponding cell line, GenomePlex® and REPLI-g as the WGA methods, GeneRead DNAseq Human CRC Panel as the 38 gene panel. The workflow was further validated on metastatic CRC patient samples, assaying both tumor and CTCs. WBCs from the same patients were included to eliminate germline contaminations. The described workflow performed well on samples with sufficient DNA, but showed bias for rare cells with limited DNA input. REPLI-g provided an unbiased amplification on fresh rare cells, enabling an accurate variant calling using the targeted NGS. Somatic variants were detected in patient CTCs and not found in age matched healthy donors. This demonstrates the feasibility of a simple workflow for clinically relevant monitoring of tumor genetics in real time and over the course of a patient's therapy using CTCs.

16.
Hum Genet ; 136(3): 287-296, 2017 03.
Article En | MEDLINE | ID: mdl-28054173

Alopecia with mental retardation syndrome (APMR) is a very rare autosomal recessive condition that is associated with total or partial absence of hair from the scalp and other parts of the body as well as variable intellectual disability. Here we present whole-exome sequencing results of a large consanguineous family segregating APMR syndrome with seven affected family members. Our study revealed a novel predicted pathogenic, homozygous missense mutation in the AHSG (OMIM 138680) gene (AHSG: NM_001622:exon7:c.950G>A:p.Arg317His). The variant is predicted to affect a region of the protein required for protein processing and disrupts a phosphorylation motif. In addition, the altered protein migrates with an aberrant size relative to healthy individuals. Consistent with the phenotype, AHSG maps within APMR linkage region 1 (APMR 1) as reported before, and falls within runs of homozygosity (ROH). Previous families with APMR syndrome have been studied through linkage analyses and the linkage resolution did not allow pointing out to a single gene candidate. Our study is the first report to identify a homozygous missense mutation for APMR syndrome through whole-exome sequencing.


Alopecia/genetics , Intellectual Disability/genetics , alpha-2-HS-Glycoprotein/genetics , Amino Acid Sequence , Blotting, Western , Consanguinity , Exome , Female , Homozygote , Humans , Male , Mutation, Missense , Pedigree , Phosphorylation , alpha-2-HS-Glycoprotein/chemistry
17.
PLoS Genet ; 11(10): e1005496, 2015 Oct.
Article En | MEDLINE | ID: mdl-26448358

High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.


Arrhythmias, Cardiac/genetics , Genetic Predisposition to Disease , Plasma Membrane Calcium-Transporting ATPases/genetics , Sequence Analysis, DNA , Arrhythmias, Cardiac/pathology , Base Sequence , Chromosome Mapping , Genetic Variation , Genome, Human , Genotype , Humans , Phenotype
19.
Nat Genet ; 47(7): 736-45, 2015 Jul.
Article En | MEDLINE | ID: mdl-26005866

Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.


Prostatic Neoplasms/genetics , Cell Line, Tumor , DNA Copy Number Variations , Genetic Association Studies , Genetic Heterogeneity , Genome, Human , Humans , Male , Middle Aged , Neoplasm Grading , Point Mutation , Polymorphism, Single Nucleotide , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics
20.
BMC Bioinformatics ; 15: 78, 2014 Mar 19.
Article En | MEDLINE | ID: mdl-24646301

BACKGROUND: Chromothripsis, a newly discovered type of complex genomic rearrangement, has been implicated in the evolution of several types of cancers. To date, it has been described in bone cancer, SHH-medulloblastoma and acute myeloid leukemia, amongst others, however there are still no formal or automated methods for detecting or annotating it in high throughput sequencing data. As such, findings of chromothripsis are difficult to compare and many cases likely escape detection altogether. RESULTS: We introduce ShatterProof, a software tool for detecting and quantifying chromothriptic events. ShatterProof takes structural variation calls (translocations, copy-number variations, short insertions and loss of heterozygosity) produced by any algorithm and using an operational definition of chromothripsis performs robust statistical tests to accurately predict the presence and location of chromothriptic events. Validation of our tool was conducted using clinical data sets including matched normal, prostate cancer samples in addition to the colorectal cancer and SCLC data sets used in the original description of chromothripsis. CONCLUSIONS: ShatterProof is computationally efficient, having low memory requirements and near linear computation time. This allows it to become a standard component of sequencing analysis pipelines, enabling researchers to routinely and accurately assess samples for chromothripsis. Source code and documentation can be found at http://search.cpan.org/~sgovind/Shatterproof.


Chromosome Aberrations , Gene Rearrangement/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Software , Algorithms , DNA Copy Number Variations/genetics , Humans , Male , Neoplasms/genetics , Sequence Analysis, DNA
...