Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38675756

RESUMEN

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than seven million deaths worldwide. To reduce viral spread, the Israel Institute for Biological Research (IIBR) developed and produced a new rVSV-SARS-CoV-2-S vaccine candidate (BriLife®) based on a platform of a genetically engineered vesicular stomatitis virus (VSV) vector that expresses the spike protein of SARS-CoV-2 instead of the VSV-G protein on the virus surface. Quantifying the virus titer to evaluate vaccine potency requires a reliable validated assay that meets all the stringent pharmacopeial requirements of a bioanalytical method. Here, for the first time, we present the development and extensive validation of a quantitative plaque assay using Vero E6 cells for the determination of the concentration of the rVSV-SARS-CoV-2-S viral vector. Three different vaccine preparations with varying titers (DP_low, DP_high, and QC sample) were tested according to a strict validation protocol. The newly developed plaque assay was found to be highly specific, accurate, precise, and robust. The mean deviations from the predetermined titers for the DP_low, DP_high, and QC preparations were 0.01, 0.02, and 0.09 log10, respectively. Moreover, the mean %CV values for intra-assay precision were 18.7%, 12.0%, and 6.0%, respectively. The virus titers did not deviate from the established values between cell passages 5 and 19, and no correlation was found between titer and passage. The validation results presented herein indicate that the newly developed plaque assay can be used to determine the concentration of the BriLife® vaccine, suggesting that the current protocol is a reliable methodology for validating plaque assays for other viral vaccines.

2.
Front Bioeng Biotechnol ; 12: 1333548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449674

RESUMEN

The COVID-19 pandemic has led to high global demand for vaccines to safeguard public health. To that end, our institute has developed a recombinant viral vector vaccine utilizing a modified vesicular stomatitis virus (VSV) construct, wherein the G protein of VSV is replaced with the spike protein of SARS-CoV-2 (rVSV-ΔG-spike). Previous studies have demonstrated the production of a VSV-based vaccine in Vero cells adsorbed on Cytodex 1 microcarriers or in suspension. However, the titers were limited by both the carrier surface area and shear forces. Here, we describe the development of a bioprocess for rVSV-ΔG-spike production in serum-free Vero cells using porous Fibra-Cel® macrocarriers in fixed-bed BioBLU®320 5p bioreactors, leading to high-end titers. We identified core factors that significantly improved virus production, such as the kinetics of virus production, the use of macrospargers for oxygen supply, and medium replenishment. Implementing these parameters, among others, in a series of GMP production processes improved the titer yields by at least two orders of magnitude (2e9 PFU/mL) over previously reported values. The developed process was highly effective, repeatable, and robust, creating potent and genetically stable vaccine viruses and introducing new opportunities for application in other viral vaccine platforms.

3.
Front Immunol ; 13: 942317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059507

RESUMEN

Hyper-immune antisera from large mammals, in particular horses, are routinely used for life-saving anti-intoxication intervention. While highly efficient, the use of these immunotherapeutics is complicated by possible recipient reactogenicity and limited availability. Accordingly, there is an urgent need for alternative improved next-generation immunotherapies to respond to this issue of high public health priority. Here, we document the development of previously unavailable tools for equine antibody engineering. A novel primer set, EquPD v2020, based on equine V-gene data, was designed for efficient and accurate amplification of rearranged horse antibody V-segments. The primer set served for generation of immune phage display libraries, representing highly diverse V-gene repertoires of horses immunized against botulinum A or B neurotoxins. Highly specific scFv clones were selected and expressed as full-length antibodies, carrying equine V-genes and human Gamma1/Lambda constant genes, to be referred as "Centaur antibodies". Preliminary assessment in a murine model of botulism established their therapeutic potential. The experimental approach detailed in the current report, represents a valuable tool for isolation and engineering of therapeutic equine antibodies.


Asunto(s)
Anticuerpos , Región Variable de Inmunoglobulina , Animales , Anticuerpos/genética , Técnicas de Visualización de Superficie Celular , Caballos , Humanos , Región Variable de Inmunoglobulina/genética , Mamíferos , Ratones , Neurotoxinas , Proteínas Recombinantes/genética
4.
Vaccines (Basel) ; 10(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36146601

RESUMEN

Botulism is a paralytic disease caused by botulinum neurotoxins (BoNTs). Equine antitoxin is currently the standard therapy for botulism in human. The preparation of equine antitoxin relies on the immunization of horses with botulinum toxoid, which suffers from low yield and safety limitations. The Hc fragment of BoNTs was suggested to be a potent antibotulinum subunit vaccine. The current study presents a comparative evaluation of equine-based toxoid-derived antitoxin (TDA) and subunit-derived antitoxin (SDA). The potency of recombinant Hc/A, Hc/B, and Hc/E in mice was similar to that of toxoids of the corresponding serotypes. A single boost with Hc/E administered to a toxoid E-hyperimmune horse increased the neutralizing antibody concentration (NAC) from 250 to 850 IU/mL. Immunization of naïve horses with the recombinant subunits induced a NAC comparable to that of horses immunized with the toxoid. SDA and TDA bound common epitopes on BoNTs, as demonstrated by an in vitro competition binding assay. In vivo, SDA and TDA showed similar efficacy when administered to guinea pigs postexposure to a lethal dose of botulinum toxins. Collectively, the results of the current study suggest that recombinant BoNT subunits may replace botulinum toxoids as efficient and safe antigens for the preparation of pharmaceutical anti-botulinum equine antitoxins.

5.
Toxins (Basel) ; 14(4)2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35448890

RESUMEN

The receptor-binding domain of botulinum neurotoxin (HC fragment), is a promising botulism vaccine candidate. In the current study, fermentation strategies were evaluated to upscale HC fragment expression. A simple translation of the growth conditions from shake flasks to a batch fermentation process resulted in limited culture growth and protein expression (OD of 11 and volumetric protein yields of 123 mg/L). Conducting fed-batch fermentation with rich media and continuous nutrient supplementation significantly improved culture growth (OD of 40.3) and protein expression (1093 mg/L). A further increase in HC fragment yield was achieved by high cell density cultivation (HCDC). The bacterium was grown in a defined medium and with a combined bolus/continuous feed of nutrients to maintain desired oxygen levels and prevent acetate accumulation. The final OD of the process was 260, and the volumetric yield of the HC fragment was 2065 mg/L, which reflects improvement by an order of magnitude. Purified HC fragments, produced by HCDC, exhibited typical biochemical and protective characteristics in mice. Taken together, the advancements achieved in this study promote large-scale production of the HC fragment in E. coli for use in anti-botulism vaccines.


Asunto(s)
Toxinas Botulínicas Tipo A , Botulismo , Animales , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/prevención & control , Recuento de Células , Medios de Cultivo/metabolismo , Escherichia coli , Fermentación , Ratones , Proteínas Recombinantes/metabolismo
6.
Antibodies (Basel) ; 11(1)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35323195

RESUMEN

Botulinum neurotoxin type E (BoNT/E), the fastest acting toxin of all BoNTs, cleaves the 25 kDa synaptosomal-associated protein (SNAP-25) in motor neurons, leading to flaccid paralysis. The specific detection and quantification of the BoNT/E-cleaved SNAP-25 neoepitope can facilitate the development of cell-based assays for the characterization of anti-BoNT/E antibody preparations. In order to isolate highly specific monoclonal antibodies suitable for the in vitro immuno-detection of the exposed neoepitope, mice and rabbits were immunized with an eight amino acid peptide composed of the C-terminus of the cleaved SNAP-25. The immunized rabbits developed a specific and robust polyclonal antibody response, whereas the immunized mice mostly demonstrated a weak antibody response that could not discriminate between the two forms of SNAP-25. An immune scFv phage-display library was constructed from the immunized rabbits and a panel of antibodies was isolated. The sequence alignment of the isolated clones revealed high similarity between both heavy and light chains with exceptionally short HCDR3 sequences. A chimeric scFv-Fc antibody was further expressed and characterized, exhibiting a selective, ultra-high affinity (pM) towards the SNAP-25 neoepitope. Moreover, this antibody enabled the sensitive detection of cleaved SNAP-25 in BoNT/E treated SiMa cells with no cross reactivity with the intact SNAP-25. Thus, by applying an immunization and selection procedure, we have isolated a novel, specific and high-affinity antibody against the BoNT/E-derived SNAP-25 neoepitope. This novel antibody can be applied in in vitro assays that determine the potency of antitoxin preparations and reduce the use of laboratory animals for these purposes.

7.
Vaccines (Basel) ; 10(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35214749

RESUMEN

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations of specific amino acids that might impede vaccine efficacy. BriLife® (rVSV-ΔG-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in phase II clinical trials. It is based on a replication-competent vesicular stomatitis virus (VSV) platform. The rVSV-ΔG-spike contains several spontaneously acquired spike mutations that correspond to SARS-CoV-2 variants' mutations. We show that human sera from BriLife® vaccinees preserve comparable neutralization titers towards alpha, gamma, and delta variants and show less than a three-fold reduction in the neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife® vaccinees overall maintain a neutralizing antibody response against all tested variants. We suggest that BriLife®-acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

8.
ALTEX ; 39(1): 113-122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34798660

RESUMEN

The pharmacopeia mouse neutralization assay (PMNA) is the standard method for determining the potency of phar­maceutical botulinum antitoxins. However, a PMNA requires a large number of mice, and, thus, an alternative in vitro method to replace it is needed. Herein, we developed an in vitro SiMa cell line-based neutralization assay (SBNA), compatible with a PMNA design, for therapeutic antitoxins against type E botulinum neurotoxin (BoNT/E). The SBNA measures the residual cellular activity of BoNT/E following antitoxin neutralization in the SiMa lysate using a specific quantitative sandwich ELISA for its cleaved cellular target protein SNAP-25. The potencies of different pharmaceutical antitoxin preparations were determined by applying two different quantification approaches: (1) a cutoff value, in accor­dance with the pharmacopeia concept, and (2) nonlinear regression of a standard curve generated by serial dilutions of a standard antitoxin. Both approaches achieved accurate potencies compared to the PMNA (average %RE of ~16%). Furthermore, the SBNA was able to determine in vitro, for the first time, the accurate neutralizing activity (%RE ≤ 20) of next-generation equine and rabbit therapeutic antitoxins. Collectively, a high correlation between SBNA and PMNA results was obtained for all antitoxin preparations (r = 0.99, P < 0.0001 for the standard curve approach, and r = 0.97, p < 0.0001 for the cutoff approach). In conclusion, the SBNA can potentially replace the PMNA and markedly reduce the need for laboratory animals for the approval of botulinum antitoxin preparations.


Asunto(s)
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Preparaciones Farmacéuticas , Alternativas a las Pruebas en Animales , Animales , Antitoxina Botulínica , Caballos , Ratones , Conejos
9.
Molecules ; 28(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36615269

RESUMEN

A novel COVID-19 vaccine (BriLife®) has been developed by the Israel Institute for Biological Research (IIBR) to prevent the spread of the SARS-CoV-2 virus throughout the population in Israel. One of the components in the vaccine formulation is tris(hydroxymethyl)aminomethane (tromethamine, TRIS), a buffering agent. TRIS is a commonly used excipient in various approved parenteral medicinal products, including the mRNA COVID-19 vaccines produced by Pfizer/BioNtech and Moderna. TRIS is a hydrophilic basic compound that does not contain any chromophores/fluorophores and hence cannot be retained and detected by reverse-phase liquid chromatography (RPLC)-ultraviolet (UV)/fluorescence methods. Among the few extant methods for TRIS determination, all exhibit a lack of selectivity and/or sensitivity and require laborious sample treatment. In this study, LC−mass spectrometry (MS) with its inherent selectivity and sensitivity in the multiple reaction monitoring (MRM) mode was utilized, for the first time, as an alternative method for TRIS quantitation. Extensive validation of the developed method demonstrated suitable specificity, linearity, precision, accuracy and robustness over the investigated concentration range (1.2−4.8 mg/mL). Specifically, the R2 of the standard curve was >0.999, the recovery was >92%, and the coefficient of variance (%CV) was <12% and <6% for repeatability and intermediate precision, respectively. Moreover, the method was validated in accordance with strict Good Manufacturing Practice (GMP) guidelines. The developed method provides valuable tools that pharmaceutical companies can use for TRIS quantitation in vaccines and other pharmaceutical products.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Trometamina/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Composición de Medicamentos , COVID-19/prevención & control , SARS-CoV-2 , Cromatografía Liquida
10.
Toxins (Basel) ; 13(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34678971

RESUMEN

Antitoxin, the only licensed drug therapy for botulism, neutralizes circulating botulinum neurotoxin (BoNT). However, antitoxin is no longer effective when a critical amount of BoNT has already entered its target nerve cells. The outcome is a chronic phase of botulism that is characterized by prolonged paralysis. In this stage, blocking toxin activity within cells by next-generation intraneuronal anti-botulinum drugs (INABDs) may shorten the chronic phase of the disease and accelerate recovery. However, there is a lack of adequate animal models that simulate the chronic phase of botulism for evaluating the efficacy of INABDs. Herein, we report the development of a rabbit model for the chronic phase of botulism, induced by intoxication with a sublethal dose of BoNT. Spirometry monitoring enabled us to detect deviations from normal respiration and to quantitatively define the time to symptom onset and disease duration. A 0.85 rabbit intramuscular median lethal dose of BoNT/A elicited the most consistent and prolonged disease duration (mean = 11.8 days, relative standard deviation = 27.9%) that still enabled spontaneous recovery. Post-exposure treatment with antitoxin at various time points significantly shortened the disease duration, providing a proof of concept that the new model is adequate for evaluating novel therapeutics for botulism.


Asunto(s)
Antitoxina Botulínica/farmacología , Toxinas Botulínicas Tipo A/efectos de los fármacos , Botulismo/tratamiento farmacológico , Animales , Toxinas Botulínicas Tipo A/administración & dosificación , Toxinas Botulínicas Tipo A/toxicidad , Botulismo/diagnóstico , Clostridium botulinum , Modelos Animales de Enfermedad , Femenino , Conejos , Espirometría
11.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445283

RESUMEN

Botulinum neurotoxins (BoNTs) are the most poisonous substances in nature. Currently, the only therapy for botulism is antitoxin. This therapy suffers from several limitations and hence new therapeutic strategies are desired. One of the limitations in discovering BoNT inhibitors is the absence of an in vitro assay that correlates with toxin neutralization in vivo. In this work, a high-throughput screening assay for receptor-binding inhibitors against BoNT/A was developed. The assay is composed of two chimeric proteins: a receptor-simulating protein, consisting of the fourth luminal loop of synaptic vesicle protein 2C fused to glutathione-S-transferase, and a toxin-simulating protein, consisting of the receptor-binding domain of BoNT/A fused to beta-galactosidase. The assay was applied to screen the LOPAC1280 compound library. Seven selected compounds were evaluated in mice exposed to a lethal dose of BoNT/A. The compound aurintricarboxylic acid (ATA) conferred 92% protection, whereas significant delayed time to death (p < 0.005) was observed for three additional compounds. Remarkably, ATA was also fully protective in mice challenged with a lethal dose of BoNT/E, which also uses the SV2 receptor. This study demonstrates that receptor-binding inhibitors have the potential to serve as next generation therapeutics for botulism, and therefore the assay developed may facilitate discovery of new anti-BoNT countermeasures.


Asunto(s)
Ácido Aurintricarboxílico/farmacología , Toxinas Botulínicas Tipo A/toxicidad , Toxinas Botulínicas/toxicidad , Botulismo/tratamiento farmacológico , Botulismo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Botulismo/genética , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
12.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072087

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global pandemic. The first step of viral infection is cell attachment, which is mediated by the binding of the SARS-CoV-2 receptor binding domain (RBD), part of the virus spike protein, to human angiotensin-converting enzyme 2 (ACE2). Therefore, drug repurposing to discover RBD-ACE2 binding inhibitors may provide a rapid and safe approach for COVID-19 therapy. Here, we describe the development of an in vitro RBD-ACE2 binding assay and its application to identify inhibitors of the interaction of the SARS-CoV-2 RBD to ACE2 by the high-throughput screening of two compound libraries (LOPAC®1280 and DiscoveryProbeTM). Three compounds, heparin sodium, aurintricarboxylic acid (ATA), and ellagic acid, were found to exert an effective binding inhibition, with IC50 values ranging from 0.6 to 5.5 µg/mL. A plaque reduction assay in Vero E6 cells infected with a SARS-CoV-2 surrogate virus confirmed the inhibition efficacy of heparin sodium and ATA. Molecular docking analysis located potential binding sites of these compounds in the RBD. In light of these findings, the screening system described herein can be applied to other drug libraries to discover potent SARS-CoV-2 inhibitors.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Animales , Antivirales/uso terapéutico , Ácido Aurintricarboxílico/farmacología , Ácido Aurintricarboxílico/uso terapéutico , COVID-19/virología , Chlorocebus aethiops , Ácido Elágico/farmacología , Ácido Elágico/uso terapéutico , Heparina/farmacología , Heparina/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Dominios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Internalización del Virus/efectos de los fármacos
13.
Antimicrob Agents Chemother ; 65(8): e0042121, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33972251

RESUMEN

Antitoxin is currently the only approved therapy for botulinum intoxications. The efficacy of antitoxin preparations is evaluated in animals. However, while in practice antitoxin is administered to patients only after symptom onset, in most animal studies, it is tested in relation to time postintoxication. This may be attributed to difficulties in quantitating early botulism symptoms in animals. In the current study, a novel system based on high-resolution monitoring of mouse activity on a running wheel was developed to allow evaluation of postsymptom antitoxin efficacy. The system enables automatic and remote monitoring of 48 mice simultaneously. Based on the nocturnal activity patterns of individual naive mice, two criteria were defined as the onset of symptoms. Postsymptom treatment with a human-normalized dose of antitoxin was fully protective in mice exposed to 4 50% lethal doses (LD50s) of botulinum neurotoxin serotype A (BoNT/A) and BoNT/B. Moreover, for the first time, a high protection rate was obtained in mice treated postsymptomatically, following a challenge with BoNT/E, the fastest-acting BoNT. The running wheel system was further modified to develop a mouse model for the evaluation of next-generation therapeutics for progressive botulism at time points where antitoxin is not effective. Exposure of mice to 0.3 LD50 of BoNT/A resulted in long-lasting paralysis and a reduction in running activity for 16 to 18 days. Antitoxin treatment was no longer effective when administered 72 h postintoxication, defining the time window to evaluate next-generation therapeutics. Altogether, the running wheel systems presented herein offer quantitative means to evaluate the efficacy of current and future antibotulinum drugs.


Asunto(s)
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Animales , Antitoxinas/uso terapéutico , Botulismo/diagnóstico , Botulismo/tratamiento farmacológico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Serogrupo
14.
Front Pharmacol ; 12: 637792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897426

RESUMEN

Medical treatment may require the continuous intravenous (IV) infusion of drugs to sustain the therapeutic blood concentration and to minimize dosing errors. Animal disease models that ultimately mimic the intended use of new potential drugs via a continuous IV infusion in unrestrained, free roaming animals are required. While peripherally inserted central catheters (PICCs) and other central line techniques for prolonged IV infusion of drugs are prevalent in the clinic, continuous IV infusion methods in an animal model are challenging and limited. In most cases, continuous IV infusion methods require surgical knowledge as well as expensive and complicated equipment. In the current work, we established a novel rabbit model for prolonged continuous IV infusion by inserting a PICC line from the marginal ear vein to the superior vena cava and connecting it to an externally carried ambulatory infusion pump. Either saline or a clinically relevant formulation could be steadily and continuously infused at 3-6 ml/h for 11 consecutive days into freely moving rabbits while maintaining normal body temperature, weight, and respiration physiology, as determined by daily spirometry. This new model is simple to execute and can advance the ability to administer and test new drug candidates.

15.
Arch Toxicol ; 95(4): 1503-1516, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33569691

RESUMEN

The application of mass spectrometry (MS) to detect unique peptide markers has been widely employed as a means of identifying bacterial proteins. Botulinum neurotoxins (BoNTs) are bacterial proteins that cause the life-threatening disease botulism. BoNTs are divided into several antigenically distinct serotypes and several dozen subtypes. The toxins' molecular heterogeneity makes their detection highly challenging. In this study, we describe a new LC-MS/MS-based platform for the direct identification of proteins derived from various species and subspecies in a single assay, as exemplified by BoNTs. The platform employs a rational down-selection process through several steps based on a combination of bioinformatics, tryptic digestion, and LC-MS, each leads to the final panel of markers. This approach has been demonstrated for all 8 subtypes of botulinum serotype A (BoNT/A). Ab-independent and Ab-dependent assays were developed based on the identification of 4 rationally selected markers or a combination of some of them, which enables full selectivity coverage. The Ab-independent assay, which is highly simple and rapid, has a sample-to-result turnaround time of approximately 40 min and enables the identification of 500 MsLD50/mL (5 ng/mL) BoNT/A in complex environmental matrices. The Ab-dependent assay, which is based on toxin's specific enrichment, has a turnaround time of 100 min, but enables improved sensitivity (50 MsLD50/mL, 0.5 ng/mL). Both assays were verified and validated using various environmental samples. This approach can easily be expanded to other botulinum serotypes and exhibits the potential for even further extension as a highly multiplexed assay for protein-based toxins, viruses, and organisms.


Asunto(s)
Toxinas Botulínicas Tipo A/análisis , Cromatografía Liquida/métodos , Clostridium/metabolismo , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Toxinas Botulínicas Tipo A/aislamiento & purificación , Ratones , Péptidos/análisis
16.
BioTech (Basel) ; 10(4)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35822796

RESUMEN

This study reports a highly efficient, rapid one-step purification process for the production of the recombinant vesicular stomatitis virus-based vaccine, rVSV-∆G-spike (rVSV-S), recently developed by the Israel Institute for Biological Research (IIBR) for the prevention of COVID-19. Several purification strategies are evaluated using a variety of chromatography methods, including membrane adsorbers and packed-bed ion-exchange chromatography. Cell harvest is initially treated with endonuclease, clarified, and further concentrated by ultrafiltration before chromatography purification. The use of anion-exchange chromatography in all forms results in strong binding of the virus to the media, necessitating a high salt concentration for elution. The large virus and spike protein binds very strongly to the high surface area of the membrane adsorbents, resulting in poor virus recovery (<15%), while the use of packed-bed chromatography, where the surface area is smaller, achieves better recovery (up to 33%). Finally, a highly efficient chromatography purification process with CaptoTM Core 700 resin, which does not require binding and the elution of the virus, is described. rVSV-S cannot enter the inner pores of the resin and is collected in the flow-through eluent. Purification of the rVSV-S virus with CaptoTM Core 700 resulted in viral infectivity above 85% for this step, with the efficient removal of host cell proteins, consistent with regulatory requirements. Similar results were obtained without an initial ultrafiltration step.

17.
Nat Commun ; 11(1): 6402, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328475

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and  alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Peso Corporal , COVID-19/virología , Línea Celular , Cricetinae , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Genoma Viral , Pulmón/patología , Pulmón/virología , Ratones Endogámicos C57BL , Mutación/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Vacunación , Carga Viral
18.
Toxins (Basel) ; 12(6)2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481526

RESUMEN

Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor bean plant), is one of the most lethal toxins known. To date, there is no approved post-exposure therapy for ricin exposures. This work demonstrates for the first time the therapeutic efficacy of equine-derived anti-ricin F(ab')2 antibodies against lethal pulmonary and systemic ricin exposures in swine. While administration of the antitoxin at 18 h post-exposure protected more than 80% of both intratracheally and intramuscularly ricin-intoxicated swine, treatment at 24 h post-exposure protected 58% of the intramuscular-exposed swine, as opposed to 26% of the intratracheally exposed animals. Quantitation of the anti-ricin neutralizing units in the anti-toxin preparations confirmed that the disparate protection conferred to swine subjected to the two routes of exposure stems from variance between the two models. Furthermore, dose response experiments showed that approximately 3 times lesser amounts of antibody are needed for high-level protection of the intramuscularly compared to the intratracheally intoxicated swine. This study, which demonstrates the high-level post-exposure efficacy of anti-ricin antitoxin at clinically relevant time-points in a large animal model, can serve as the basis for the formulation of post-exposure countermeasures against ricin poisoning in humans.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Antitoxinas/farmacología , Fragmentos Fab de Inmunoglobulinas/farmacología , Ricina/antagonistas & inhibidores , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Caballos , Inyecciones Intramusculares , Ratones , Ricina/administración & dosificación , Ricina/inmunología , Ricina/envenenamiento , Sus scrofa , Factores de Tiempo
19.
Dis Model Mech ; 11(9)2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30115749

RESUMEN

Botulinum neurotoxin (BoNT) serotypes A, B and E are responsible for most cases of human botulism. The only approved therapy for botulism is antitoxin treatment administered to patients after symptom onset. However, a recent meta-analysis of antitoxin efficacy in human botulism cases over the past century concluded that a statistically significant reduction in mortality is associated with the use of type E and type A antitoxin, but not with type B antitoxin. Animal models could be highly valuable in studying postsymptom antitoxin efficacy (PSAE). However, the few attempts to evaluate PSAE in animals relied on subjective observations and showed ∼50% protection. Recently, we developed a novel spirometry model for the quantitative evaluation of PSAE in rabbits and used it to demonstrate full protection against BoNT/E. In the current study, a comparative evaluation of PSAE in botulism types A and B was conducted using this quantitative respiratory model. A lethal dose of each toxin induced a comparable course of disease both in terms of time to symptoms (TTS, 41.9±1.3 and 40.6±1.1 h, respectively) and of time to death (TTD, 71.3±3.1 and 66.3±1.7 h, respectively). However, in accordance with the differential serotypic PSAE observed in humans, postsymptom antitoxin treatment was fully effective only in BoNT/A-intoxicated rabbits. This serotypic divergence was reflected by a positive and statistically significant correlation between TTS and TTD in BoNT/A-intoxicated rabbits (r=0.91, P=0.0006), but not in those intoxicated with BoNT/B (r=0.06, P=0.88). The rabbit spirometry system might be useful in the evaluation toolkit of botulism therapeutics, including those under development and intended to act when antitoxin is no longer effective.


Asunto(s)
Antitoxinas/uso terapéutico , Toxinas Botulínicas Tipo A/toxicidad , Botulismo/tratamiento farmacológico , Espirometría , Animales , Antitoxinas/administración & dosificación , Botulismo/sangre , Botulismo/diagnóstico , Modelos Animales de Enfermedad , Conejos , Serotipificación , Factores de Tiempo
20.
Artículo en Inglés | MEDLINE | ID: mdl-29437616

RESUMEN

Botulinum neurotoxins (BoNTs), the most poisonous substances known in nature, pose significant concern to health authorities. The only approved therapeutic for botulism is antitoxin. While administered to patients only after symptom onset, antitoxin efficacy is evaluated in animals mostly in relation to time postintoxication regardless of symptoms. This is most likely due to the difficulty in measuring early symptoms of botulism in animals. In this study, a rabbit spirometry model was developed to quantify early respiratory symptoms of type E botulism that were further used as a trigger for treatment. Impaired respiration, in the form of a reduced minute volume, was detected as early as 18.1 ± 2.9 h after intramuscular exposure to 2 rabbit 50% lethal doses (LD50) of BoNT serotype E (BoNT/E), preceding any visible symptoms. All rabbits treated with antitoxin immediately following symptom onset survived. Postsymptom antitoxin efficacy was further evaluated in relation to toxin and antitoxin dosages as well as delayed antitoxin administration. Our system enabled us to demonstrate, for the first time, full antitoxin protection of animals treated with antitoxin after the onset of objective and quantitative type E botulism symptoms. This model may be utilized to evaluate the efficacy of antitoxins for additional serotypes of BoNT as well as that of next-generation anti-BoNT drugs that enter affected cells and act when antitoxin is no longer effective.


Asunto(s)
Antitoxinas/uso terapéutico , Botulismo/tratamiento farmacológico , Espirometría/métodos , Animales , Conejos , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...