Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
PeerJ ; 12: e16787, 2024.
Article En | MEDLINE | ID: mdl-38250722

Background: Measuring depth of anesthesia during intracerebral surgery is an important task to guarantee patient safety, especially while the patient is fixated in a Mayfield-clamp. Processed electro-encephalography measurements have been established to monitor deep sedation. However, visualizing nociception has not been possible until recently and has not been evaluated for the neurosurgical setting. In this single-center, retrospective observational analysis, we routinely collected the nociceptive data via a nociception level monitor (NOL®) of 40 patients undergoing intracerebral tumor resection and aimed to determine if this monitoring technique is feasible and delivers relevant values to potentially base therapeutic decisions on. Methods: Forty patients (age 56 ± 18 years) received total intravenous anesthesia and were non-invasively connected to the NOL® via a finger clip as well as a bispectral-index monitoring (BIS®) to confirm deep sedation. The measured nociception levels were retrospectively evaluated at specific time points of nociceptive stress (intubation, Mayfield-positioning, incision, extubation) and compared to standard vital signs. Results: Nociceptive measurements were successfully performed in 35 patients. The largest increase in nociceptive stimulation occurred during intubation (NOL® 40 ± 16) followed by Mayfield positioning (NOL® 39 ± 16) and incision (NOL® 26 ± 12). Correlation with BIS measurements confirmed a sufficiently deep sedation during all analyzed time points (BIS 45 ± 13). Overall, patients showed an intraoperative NOL® score of 10 or less in 56% of total intervention time. Conclusions: Nociceptive monitoring using the NOL® system during intracerebral surgery is feasible and might yield helpful information to support therapeutic decisions. This could help to reduce hyperanalgesia, facilitating shorter emergence periods and less postoperative complications. Prospective clinical studies are needed to further examine the potential benefits of this monitoring approach in a neurosurgical context. Trial registration: German trial registry, registration number DRKS00029120.


Nociception , Surgical Wound , Adult , Aged , Humans , Middle Aged , Airway Extubation , Anesthesia, General , Retrospective Studies
2.
J Vis Exp ; (202)2023 Dec 08.
Article En | MEDLINE | ID: mdl-38145385

Sepsis and septic shock are frequently encountered in patients treated in intensive care units (ICUs) and are among the leading causes of death in these patients. It is caused by a dysregulated immune response to an infection. Even with optimized treatment, mortality rates remain high, which makes further insights into the pathophysiology and new treatment options necessary. Lipopolysaccharide (LPS) is a component of the cell membrane of gram-negative bacteria, which are often responsible for infections causing sepsis and septic shock. The severity and high mortality of sepsis and septic shock make standardized experimental studies in humans impossible. Thus, an animal model is needed for further studies. The pig is especially well suited for this purpose as it closely resembles humans in anatomy, physiology, and size. This protocol provides an experimental model for endotoxemic shock in pigs by LPS infusion. We were able to reliably induce changes frequently observed in septic shock patients, including hemodynamic instability, respiratory failure, and acidosis. This will allow researchers to gain valuable insight into this highly relevant condition and evaluate new therapeutic approaches in an experimental setting.


Endotoxemia , Sepsis , Shock, Septic , Humans , Swine , Animals , Lipopolysaccharides , Intensive Care Units
4.
Intensive Care Med Exp ; 11(1): 81, 2023 Nov 25.
Article En | MEDLINE | ID: mdl-38006467

OBJECTIVE: This study aimed to determine whether ultra-low tidal volume ventilation (ULTVV) applied during cardiopulmonary resuscitation (CPR) compared with standard ventilation (intermittent positive pressure ventilation, IPPV) can reduce pulmonary end-organ damage in the post-resuscitation period. METHODS: A prospective, randomized trial was conducted using a porcine model (n = 45). The animals were divided into three groups: IPPV, ULTVV, and a sham control group. Juvenile male pigs underwent CPR after inducing ventricular fibrillation and received the designated ventilation intervention [IPPV: tidal volume 6-8 ml per kilogram body weight (ml/kg BW), respiratory rate 10/min, FiO2 1.0; ULTVV: tidal volume 2-3 ml/kg BW, respiratory rate 50/min, FiO2 1.0]. A 20-h observation period followed if return of spontaneous circulation was achieved. Histopathological examination using the diffuse alveolar damage scoring system was performed on postmortem lung tissue samples. Arterial and venous blood gas analyses and ventilation/perfusion measurements via multiple inert gas elimination technique (MIGET) were repeatedly recorded during the experiment. RESULTS: Out of the 45 experiments conducted, 28 animals were excluded based on predefined criteria. Histopathological analysis showed no significant differences in lung damage between the ULTVV and IPPV groups. ULTVV demonstrated adequate oxygenation and decarboxylation. MIGET measurements during and after resuscitation revealed no significant differences between the intervention groups. CONCLUSION: In the short-term follow-up phase, ULTVV demonstrated similar histopathological changes and functional pulmonary parameters compared to standard ventilation. Further research is needed to investigate the long-term effects and clinical implications of ULTVV in resuscitation settings.

5.
PeerJ ; 11: e16062, 2023.
Article En | MEDLINE | ID: mdl-37790622

Hypoxia-induced neuroinflammation after cardiac arrest has been shown to be mitigated by different ventilation methods. In this prospective randomized animal trial, 35 landrace pigs were randomly divided into four groups: intermittent positive pressure ventilation (IPPV), synchronized ventilation 20 mbar (SV 20 mbar), chest compression synchronized ventilation 40 mbar (CCSV 40 mbar) and a control group (Sham). After inducing ventricular fibrillation, basic life support (BLS) and advanced life support (ALS) were performed, followed by post-resuscitation monitoring. After 6 hours, the animals were euthanized, and direct postmortem brain tissue samples were taken from the hippocampus (HC) and cortex (Cor) for molecular biological investigation of cytokine mRNA levels of Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα). The data analysis showed that CCSV 40 mbar displayed low TNFα mRNA-levels, especially in the HC, while the highest TNFα mRNA-levels were detected in SV 20 mbar. The results indicate that chest compression synchronized ventilation may have a potential positive impact on the cytokine expression levels post-resuscitation. Further studies are needed to derive potential therapeutic algorithms from these findings.


Cardiopulmonary Resuscitation , Heart Arrest , Animals , Cardiopulmonary Resuscitation/methods , Cytokines , Heart Arrest/therapy , Interleukin-6/genetics , Prospective Studies , RNA, Messenger , Swine , Tumor Necrosis Factor-alpha/genetics
6.
J Clin Med ; 12(20)2023 Oct 19.
Article En | MEDLINE | ID: mdl-37892763

Free flap tissue transfer represents the gold standard for extensive defect reconstruction, although malperfusion due to thrombosis remains the leading risk factor for flap failure. Recent studies indicate an increased immune response and platelet activation in connection with pathologic coagulation. The underlying cellular and molecular mechanisms remain poorly understood, however. The presented study, therefore, aims to investigate if transfer-related ischemia alters intra-flap metabolism and electrolyte concentrations compared to central venous blood after free flap transfer in pigs to establish a novel experimental model. Free transfer of a myocutaneous gracilis flap to the axillary region was conducted in five juvenile male pigs. The flap artery was anastomosed to the axillary artery, and intra-flap venous blood was drained and transfused using a rubber-elastic fixed intravenous catheter. Blood gas analysis was performed to assess the effect of transfer time-induced ischemia on intra-flap electrolyte levels, acid-base balance, and hemoglobin concentrations compared to central venous blood. Time to flap reperfusion was 52 ± 10 min on average, resulting in a continuous pH drop (acidosis) in the flaps' venous blood compared to the central venous system (p = 0.037). Potassium (p = 0.016), sodium (p = 0.003), and chloride (p = 0.007) concentrations were significantly increased, whereas bicarbonate (p = 0.016) and calcium (p = 0.008) significantly decreased within the flap. These observations demonstrate the induction of anaerobic glycolysis and electrolyte displacement resulting in acidosis and hence significant tissue damage already after a short ischemic period, thereby validating the novel animal model for investigating intra-flap metabolism and offering opportunities for exploring various (immuno-) thrombo-hemostatic issues in transplantation surgery.

7.
PeerJ ; 11: e15875, 2023.
Article En | MEDLINE | ID: mdl-37637154

Background: Sepsis is a common disease in intensive care units worldwide, which is associated with high morbidity and mortality. This process is often associated with multiple organ failure including acute lung injury. Although massive research efforts have been made for decades, there is no specific therapy for sepsis to date. Early and best treatment is crucial. Lidocaine is a common local anesthetic and used worldwide. It blocks the fast voltage-gated sodium (Na+) channels in the neuronal cell membrane responsible for signal propagation. Recent studies show that lidocaine administered intravenously improves pulmonary function and protects pulmonary tissue in pigs under hemorrhagic shock, sepsis and under pulmonary surgery. The aim of this study is to show that lidocaine inhalative induces equivalent effects as lidocaine intravenously in pigs in a lipopolysaccharide (LPS)-induced sepsis with acute lung injury. Methods: After approval of the local State and Institutional Animal Care Committee, to induce the septic inflammatory response a continuous infusion of lipopolysaccharide (LPS) was administered to the pigs in deep anesthesia. Following induction and stabilisation of sepsis, the study medication was randomly assigned to one of three groups: (1) lidocaine intravenously, (2) lidocaine per inhalation and (3) sham group. All animals were monitored for 8 h using advanced and extended cardiorespiratory monitoring. Postmortem assessment included pulmonary mRNA expression of mediators of early inflammatory response (IL-6 & TNF-alpha), wet-to-dry ratio and lung histology. Results: Acute respiratory distress syndrome (ARDS) was successfully induced after sepsis-induction with LPS in all three groups measured by a significant decrease in the PaO2/FiO2 ratio. Further, septic hemodynamic alterations were seen in all three groups. Leucocytes and platelets dropped statistically over time due to septic alterations in all groups. The wet-to-dry ratio and the lung histology showed no differences between the groups. Additionally, the pulmonary mRNA expression of the inflammatory mediators IL-6 and TNF-alpha showed no significant changes between the groups. The proposed anti-inflammatory and lung protective effects of lidocaine in sepsis-induced acute lung injury could not be proven in this study.


Acute Lung Injury , Respiratory Distress Syndrome , Sepsis , Swine , Animals , Lidocaine/pharmacology , Lipopolysaccharides/toxicity , Interleukin-6/genetics , Tumor Necrosis Factor-alpha/genetics , Sepsis/complications , Acute Lung Injury/drug therapy , Respiratory Distress Syndrome/drug therapy , RNA, Messenger
8.
Biomedicines ; 11(3)2023 Mar 14.
Article En | MEDLINE | ID: mdl-36979878

The optimal ventilation strategy during cardiopulmonary resuscitation (CPR) has eluded scientists for years. This porcine study aims to validate the hypothesis that ultra-low tidal volume ventilation (tidal volume 2-3 mL kg-1; ULTVV) minimizes renal and hepatic end-organ damage when compared to standard intermittent positive pressure ventilation (tidal volume 8-10 mL kg-1; IPPV) during CPR. After induced ventricular fibrillation, the animals were ventilated using an established CPR protocol. Upon return of spontaneous circulation (ROSC), the follow-up was 20 h. After sacrifice, kidney and liver samples were harvested and analyzed histopathologically using an Endothelial, Glomerular, Tubular, and Interstitial (EGTI) scoring system for the kidney and a newly developed scoring system for the liver. Of 69 animals, 5 in the IPPV group and 6 in the ULTVV group achieved sustained ROSC and were enlisted, while 4 served as the sham group. Creatinine clearance was significantly lower in the IPPV-group than in the sham group (p < 0.001). The total EGTI score was significantly higher for ULTVV than for the sham group (p = 0.038). Aminotransferase levels and liver score showed no significant difference between the intervention groups. ULTVV may be advantageous when compared to standard ventilation during CPR in the short-term ROSC follow-up period.

9.
Life Sci ; 319: 121410, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36681185

AIMS: Influencing the inflammatory response represents an important branch in ARDS research. The naturally occurring polyphenol derivative resveratrol has already been confirmed to have strong anti-inflammatory effects on the cardiac and metabolic system. In the present study, we investigated the propagated anti-inflammatory effects of intravenous resveratrol in a porcine ARDS model. MAIN METHODS: 20 domestic pigs (30 ± 2 kg; approval G20-1-135), divided into three groups: 1. resveratrol high dose (HD; n = 8), single bolus of 20 mg/kg over 15 min. 2. resveratrol low dose (LD; n = 8), single bolus of 10 mg/kg over 15 min. 3. Vehicle (n = 4), with the carrier solution DMSO over 15 min administered after ARDS induction. ARDS induction: using BAL/oleic acid and a subsequent test period of 8 h. Measurement parameters: Hemodynamics/spirometry data were collected continuously, BGA/laboratory parameters repetitively. Post-mortem: analysis of pulmonary inflammatory markers. STATISTICS: Two-way analysis of variance (repeated measurement) and Student-Newman-Keuls method. KEY FINDINGS: Resveratrol HD significantly reduced the expression of TNF-alpha in lung tissue compared to the LD group (p < 0.05). A significantly increased functional residual capacity (FRC) could be demonstrated for the HD group at the end of the test (p < 0.05 for HD vs. LD/vehicle). Further, resveratrol HD reduced statistically the EVLWI compared to LD/vehicle (p < 0.05 at T4/T8). SIGNIFICANCE: In this study, resveratrol HD ameliorated pulmonary mechanics as reported for the FRC and EVLWI. Further, the proposed anti-inflammatory effects of resveratrol, a significant reduction in the expression of TNF-alpha was observed in the HD group.


Respiratory Distress Syndrome , Swine , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , Respiratory Distress Syndrome/drug therapy , Tumor Necrosis Factor-alpha/pharmacology , Lung , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
10.
J Vis Exp ; (186)2022 08 25.
Article En | MEDLINE | ID: mdl-36094270

Endotracheal intubation is often a basic requirement for translational research in porcine models for various interventions that require a secured airway or high ventilation pressures. Endotracheal intubation is a challenging skill, requiring a minimum number of successful endotracheal intubations to achieve a high success rate under optimal conditions, which is often unachievable for non-anaesthesiology researchers. Due to the specific porcine airway anatomy, a difficult airway can usually be assumed. The impossibility of establishing a secure airway can result in injury, adverse events, or death of the laboratory animal. Using a prospective, randomized, controlled evaluation approach, it has been shown that fiberoptic-assisted endotracheal intubation takes longer but has a higher first-pass success rate than conventional intubation without causing clinically relevant drops in oxygen saturation. This model presents a standardized regimen for endoscopically guided endotracheal intubation, providing a secured airway, especially for researchers who are inexperienced in the technique of endotracheal intubation via direct laryngoscopy. This procedure is expected to minimize animal suffering and unnecessary animal losses.


Airway Management , Intubation, Intratracheal , Animals , Airway Management/methods , Endoscopes , Intubation, Intratracheal/methods , Intubation, Intratracheal/veterinary , Laryngoscopy/methods , Prospective Studies , Swine
11.
Intensive Care Med Exp ; 10(1): 37, 2022 Sep 05.
Article En | MEDLINE | ID: mdl-36058954

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a common disease in intensive care medicine. Despite intensive research, mortality rates are high, not even in COVID-19 ARDS. Thereby, pigs offer some advantages to study the characteristics of ARDS. Many different ARDS models exist. Most of the articles published focused on histopathological and microscopic lung alterations to identify the most suitable animal ARDS model. "Macroscopic" observations and descriptions are often missing. Therefore, we performed a post-hoc comparison of two common ARDS models for pigs: lipopolysaccharide (LPS) vs. a double-hit model (bronchoalveolar lavage + oleic acid infusion). We investigated hemodynamic, spirometric and laboratory changes as another main clinical part of ARDS. RESULTS: The groups were compared by two-way analysis of variance (ANOVA) with a post-hoc Student-Newman-Keuls test. A p value lower than 0.05 was accepted as significant. All animals (n = 8 double-hit ARDS; n = 8 LPS ARDS) survived the observation period of 8 h. ARDS induction with reduced oxygen indices was successful performed in both models (76 ± 35/225 ± 54/212 ± 79 vs. 367 ± 64; T0/T4/T8 vs. BLH for double-hit; 238 ± 57/144 ± 59 vs. 509 ± 41; T4/T8 vs. BLH for LPS; p < 0.05). ARDS induced with LPS leads to more hemodynamic (mean arterial pulmonary pressure 35 ± 3/30 ± 3 vs. 28 ± 4/23 ± 4; T4/T8 LPS vs. double-hit; p < 0.05; doses of norepinephrine 1.18 ± 1.05 vs. 0.11 ± 0.16; LPS vs. double-hit for T8; p < 0.05) and inflammatory (pulmonary IL-6 expression: 2.41e-04 ± 1.08e-04 vs. 1.45e-05 ± 7.26e-06; LPS vs. double-hit; p < 0.05) alterations. ARDS induced by double-hit requires a more invasive ventilator strategy to maintain a sufficient oxygenation (PEEP at T4: 8 ± 3 vs. 6 ± 2; double-hit vs. LPS; p < 0.05). CONCLUSIONS: Both animal ARDS models are feasible and are similar to human presentation of ARDS. If your respiratory research focus on hemodynamic/inflammation variables, the LPS-induced ARDS is a feasible model. Studying different ventilator strategies, the double-hit ARDS model offers a suitable approach.

12.
J Clin Med ; 11(16)2022 Aug 22.
Article En | MEDLINE | ID: mdl-36013161

Background: Invasive ventilation during cardiopulmonary resuscitation (CPR) is very complex due to unique thoracic pressure conditions. Current guidelines do not provide specific recommendations for ventilation during ongoing chest compressions regarding positive end-expiratory pressure (PEEP). This trial examines the cardiopulmonary effects of PEEP application during CPR. Methods: Forty-two German landrace pigs were anaesthetised, instrumented, and randomised into six intervention groups. Three PEEP levels (0, 8, and 16 mbar) were compared in high standard and ultralow tidal volume ventilation. After the induction of ventricular fibrillation, mechanical chest compressions and ventilation were initiated and maintained for thirty minutes. Blood gases, ventilation/perfusion ratio, and electrical impedance tomography loops were taken repeatedly. Ventilation pressures and haemodynamic parameters were measured continuously. Postmortem lung tissue damage was assessed using the diffuse alveolar damage (DAD) score. Statistical analyses were performed using SPSS, and p values <0.05 were considered significant. Results: The driving pressure (Pdrive) showed significantly lower values when using PEEP 16 mbar than when using PEEP 8 mbar (p = 0.045) or PEEP 0 mbar (p < 0.001) when adjusted for the ventilation mode. Substantially increased overall lung damage was detected in the PEEP 0 mbar group (vs. PEEP 8 mbar, p = 0.038; vs. PEEP 16 mbar, p = 0.009). No significant differences in mean arterial pressure could be detected. Conclusion: The use of PEEP during CPR seems beneficial because it optimises ventilation pressures and reduces lung damage without significantly compromising blood pressure. Further studies are needed to examine long-term effects in resuscitated animals.

13.
Biomedicines ; 10(5)2022 Apr 29.
Article En | MEDLINE | ID: mdl-35625767

The calcium sensitiser levosimendan, which is used as an inodilator to treat decompensated heart failure, may also exhibit anti-inflammatory properties. We examined whether treatment with levosimendan improves cardiopulmonary function and is substantially beneficial to the inflammatory response in acute respiratory response syndrome (ARDS). Levosimendan was administered intravenously in a new experimental porcine model of ARDS. For comparison, we used milrinone, another well-known inotropic agent. Our results demonstrated that levosimendan intravenously improved hemodynamics and lung function in a porcine ARDS model. Significant beneficial alterations in the inflammatory response and lung injury were not detected.

14.
PeerJ ; 10: e13024, 2022.
Article En | MEDLINE | ID: mdl-35265399

Background: Interorgan cross-talk describes the phenomenon in which a primarily injured organ causes secondary damage to a distant organ. This cross-talk is well known between the lung and brain. One theory suggests that the release and systemic distribution of cytokines via the bloodstream from the primarily affected organ sets in motion proinflammatory cascades in distant organs. In this study, we analysed the role of the systemic distribution of cytokines via the bloodstream in a porcine ARDS model for organ cross-talk and possible inflammatory changes in the brain. Methods: After approval of the State and Institutional Animal Care Committee, acute respiratory distress syndrome (ARDS) induction with oleic acid injection was performed in seven animals. Eight hours after ARDS induction, blood (35-40 ml kg-1) was taken from these seven 'ARDS donor' pigs. The collected 'ARDS donor' blood was transfused into seven healthy 'ARDS-recipient' pigs. Three animals served as a control group, and blood from these animals was transfused into three healthy pigs after an appropriate ventilation period. All animals were monitored for 8 h using advanced cardiorespiratory monitoring. Postmortem assessment included cerebral (hippocampal and cortex) mediators of early inflammatory response (IL-6, TNF-alpha, iNOS, sLCN-2), wet-to-dry ratio and lung histology. TNF-alpha serum concentration was measured in all groups. Results: ARDS was successfully induced in the 'ARDS donor' group, and serum TNF-alpha levels were elevated compared with the 'ARDS-recipient' group. In the 'ARDS-recipient' group, neither significant ARDS alterations nor upregulation of inflammatory mediators in the brain tissue were detected after high-volume random allogenic 'ARDS-blood' transfusion. The role of the systemic distribution of inflammatory cytokines from one affected organ to another could not be confirmed in this study.


Cytokines , Respiratory Distress Syndrome , Swine , Animals , Tumor Necrosis Factor-alpha , Lung/pathology , Brain/pathology , Blood Transfusion
15.
PeerJ ; 9: e12649, 2022.
Article En | MEDLINE | ID: mdl-35036142

BACKGROUND: Shedding of the endothelial glycocalyx can be observed regularly during sepsis. Moreover, sepsis may be associated with acute respiratory distress syndrome (ARDS), which requires lung protective ventilation with the two cornerstones of application of low tidal volume and positive end-expiratory pressure. This study investigated the effect of a lung protective ventilation on the integrity of the endothelial glycocalyx in comparison to a high tidal volume ventilation mode in a porcine model of sepsis-induced ARDS. METHODS: After approval by the State and Institutional Animal Care Committee, 20 male pigs were anesthetized and received a continuous infusion of lipopolysaccharide to induce septic shock. The animals were randomly assigned to either low tidal volume ventilation, high tidal volume ventilation, or no-LPS-group groups and observed for 6 h. In addition to the gas exchange parameters and hematologic analyses, the serum hyaluronic acid concentrations were determined from central venous blood and from pre- and postpulmonary and pre- and postcerebral circulation. Post-mortem analysis included histopathological evaluation and determination of the pulmonary and cerebral wet-to-dry ratios. RESULTS: Both sepsis groups developed ARDS within 6 h of the experiment and showed significantly increased serum levels of hyaluronic acid in comparison to the no-LPS-group. No significant differences in the hyaluronic acid concentrations were detected before and after pulmonary and cerebral circulation. There was also no significant difference in the serum hyaluronic acid concentrations between the two sepsis groups. Post-mortem analysis showed no significant difference between the two sepsis groups. CONCLUSION: In a porcine model of septic shock and ARDS, the serum hyaluronic acid levels were significantly elevated in both sepsis groups in comparison to the no-LPS-group. Intergroup comparison between lung protective ventilated and high tidal ventilated animals revealed no significant differences in the serum hyaluronic acid levels.

16.
BMC Anesthesiol ; 21(1): 224, 2021 09 13.
Article En | MEDLINE | ID: mdl-34517845

BACKGROUND: Many patients with acute respiratory distress syndrome (ARDS) suffer from cognitive impairment after hospital discharge. Different mechanisms have been implicated as potential causes for this impairment, inter alia cerebral inflammation. A class of drugs with antioxidant and anti-inflammatory properties are ß-HMG-CoA-reductase inhibitors ("statins"). We hypothesized that treatment with rosuvastatin attenuates cerebral cytokine mRNA expression and nitro-oxidative stress in an animal model of acute lung injury. METHODS: After approval of the institutional and state animal care committee, we performed this prospective randomized controlled animal study in accordance with the international guidelines for the care and use of laboratory animals. Thirty-two healthy male pigs were randomized to one of four groups: lung injury by central venous injection of oleic acid (n = 8), statin treatment before and directly after lung injury (n = 8), statin treatment after lung injury (n = 8), or ventilation-only controls (n = 8). About 18 h after lung injury and standardized treatment, the animals were euthanised, and the brains and lungs were collected for further examinations. We determined histologic lung injury and cerebral and pulmonal cytokine and 3-nitrotyrosine production. RESULTS: We found a significant increase in hippocampal IL-6 mRNA after lung injury (p < 0.05). Treatment with rosuvastatin before and after induction of lung injury led to a significant reduction of hippocampal IL-6 mRNA (p < 0.05). Cerebral 3-nitrotyrosine was significantly higher in lung-injured animals compared with all other groups (p < 0.05 vs. animals treated with rosuvastatin after lung injury induction; p < 0.001 vs. all other groups). 3-Nitrotyrosine was also increased in the lungs of the lung-injured pigs compared to all other groups (p < 0.05 each). CONCLUSIONS: Our findings highlight cerebral cytokine production and nitro-oxidative stress within the first day after induction of lung injury. The treatment with rosuvastatin reduced IL-6 mRNA and 3-nitrotyrosine concentration in the brains of the animals. In earlier trials, statin treatment did not reduce mortality in ARDS patients but seemed to improve quality of life in ARDS survivors. Whether this is attributable to better cognitive function because of reduced nitro-oxidative stress and inflammation remains to be elucidated.


Acute Lung Injury/complications , Brain/drug effects , Brain/physiopathology , Inflammation/prevention & control , Oxidative Stress/drug effects , Rosuvastatin Calcium/pharmacology , Animals , Disease Models, Animal , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation/complications , Inflammation/physiopathology , Swine
17.
BMC Res Notes ; 14(1): 285, 2021 Jul 23.
Article En | MEDLINE | ID: mdl-34301315

OBJECTIVE: Extracellular histones have been identified as one molecular factor that can cause and sustain alveolar damage and were linked to high mortality rates in critically ill patients. In this pilot study, we wanted to validate the proinflammatory in vivo effects of local histone application in a prospective translational porcine model. This was combined with the evaluation of an experimental acute lung injury model using intrabronchial lipopolysaccharides, which has been published previously. RESULTS: The targeted application of histones was successful in all animals. Animals showed decreased oxygenation after instillation, but no differences could be detected between the sham and histone treatments. The histologic analyses and inflammatory responses indicated that there were no differences in tissue damage between the groups.


Acute Lung Injury , Respiratory Distress Syndrome , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Disease Models, Animal , Histones , Humans , Pilot Projects , Prospective Studies , Swine
18.
Sci Rep ; 11(1): 14220, 2021 07 09.
Article En | MEDLINE | ID: mdl-34244561

Prompt reperfusion is important to rescue ischemic tissue; however, the process itself presents a key pathomechanism that contributes to a poor outcome following cardiac arrest. Experimental data have suggested the use of levosimendan to limit ischemia-reperfusion injury by improving cerebral microcirculation. However, recent studies have questioned this effect. The present study aimed to investigate the influence on hemodynamic parameters, cerebral perfusion and oxygenation following cardiac arrest by ventricular fibrillation in juvenile male pigs. Following the return of spontaneous circulation (ROSC), animals were randomly assigned to levosimendan (12 µg/kg, followed by 0.3 µg/kg/min) or vehicle treatment for 6 h. Levosimendan-treated animals showed significantly higher brain PbtO2 levels. This effect was not accompanied by changes in cardiac output, preload and afterload, arterial blood pressure, or cerebral microcirculation indicating a local effect. Cerebral oxygenation is key to minimizing damage, and thus, current concepts are aimed at improving impaired cardiac output or cerebral perfusion. In the present study, we showed that NIRS does not reliably detect low PbtO2 levels and that levosimendan increases brain oxygen content. Thus, levosimendan may present a promising therapeutic approach to rescue brain tissue at risk following cardiac arrest or ischemic events such as stroke or traumatic brain injury.


Heart Arrest/drug therapy , Microspheres , Simendan/therapeutic use , Animals , Cardiopulmonary Resuscitation , Cerebrovascular Circulation/drug effects , Hemodynamics/drug effects , Laser-Doppler Flowmetry , Male , Oxygen/metabolism , Swine
19.
Int J Med Robot ; 17(4): e2291, 2021 Aug.
Article En | MEDLINE | ID: mdl-34050598

OBJECTIVES: To investigate the safety of robotic surgery during COVID-19 pandemic concerning new-acquired COVID-19 infections for patients and healthcare workers. PATIENTS: We performed a retrospective single-centre cohort study of patients undergoing robotic surgery in initial period of COVID-19 pandemic. Patients and healthcare workers COVID-19 infection status was assessed by structured telephone follow-up and/or repeated nasopharyngeal swabs. RESULTS: After 61 robotic surgeries (93,5% cancer surgery), one patient (1.6%) had COVID-19 infection. Sixty healthcare workers cumulatively exposed to 1187 h of robotic surgery had no infection. One patient with postoperative proof of SARS-CoV-2 had complete recovery. After this potentially contagious robotic surgery, eight healthcare workers had no COVID-19 infection after follow-up with each three nasopharyngeal swabs. CONCLUSIONS: Early clinical experience of robotic surgery during COVID-19 pandemic shows that robotic surgery can be safely performed for patients and healthcare workers. Despite our results we recommend elective surgery only for verified COVID-19 negative patients.


COVID-19 , Robotic Surgical Procedures , Aged , Female , Health Personnel , Humans , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2
20.
Eur J Anaesthesiol ; 38(4): 411-421, 2021 Apr 01.
Article En | MEDLINE | ID: mdl-33399378

BACKGROUND: The treatment of haemorrhagic shock is a challenging task. Colloids have been regarded as standard treatment, but their safety and benefit have been the subject of controversial debates. Negative effects, including renal failure and increased mortality, have resulted in restrictions on their administration. The cerebral effects of different infusion regimens are largely unknown. OBJECTIVES: The current study investigated the impact of gelatine-polysuccinate, hydroxyethyl starch (HES) and balanced electrolyte solution (BES) on cerebral integrity, focusing on cerebral inflammation, apoptosis and blood flow in pigs. DESIGN: Randomised experimental study. SETTING: University-affiliated large animal research unit. ANIMALS: Twenty-four juvenile pigs aged 8 to 12 weeks. INTERVENTION: Haemorrhagic shock was induced by controlled arterial blood withdrawal to achieve a combination of relevant blood loss (30 to 40 ml kg-1) and haemodynamic deterioration. After 30 min of shock, fluid resuscitation was started with either gelatine-polysuccinate, HES or BES. The animals were then monitored for 4 h. MAIN OUTCOME MEASURES: Cerebral perfusion and diffusion were measured via arterial-spin-labelling MRI. Peripheral tissue perfusion was evaluated via white light spectroscopy. Cortical and hippocampal samples were collected at the end of the experiment. The numbers of cerebral cell nuclei were counted and mRNA expression of markers for cerebral apoptosis [glucose transporter protein type 1 (SLC2A), lipocalin 2 (LCN-2), aquaporin-4 (AQP4)] and inflammation [IL-6, TNF-α, glial fibrillary acidic protein (GFAP)] were determined. RESULTS: The three fluid protocols all stabilised the macrocirculation. Fluid resuscitation significantly increased the cerebral perfusion. Gelatine-polysuccinate and HES initially led to a higher cardiac output but caused haemodilution. Cerebral cell counts (as cells µm-2) were lower after colloid administration in the cortex (gelatine-polysuccinate, 1.8 ±â€Š0.3; HES, 1.9 ±â€Š0.4; each P < 0.05 vs. BES, 2.3 ±â€Š0.2) and the hippocampus (gelatine-polysuccinate, 0.8 ±â€Š0.2; HES, 0.9 ±â€Š0.2; each P < 0.05 vs. BES, 1.1 ±â€Š0.1). After gelatine-polysuccinate, the hippocampal SLC2A and GFAP were lower. After gelatine-polysuccinate, the cortical LCN-2 and TNF-α expression levels were increased (each P < 0.05 vs. BES). CONCLUSION: In a porcine model, fluid resuscitation by colloids, particularly gelatine-polysuccinate, was associated with the occurrence of cerebral injury. ETHICAL APPROVAL NUMBER: 23 177-07/G 15-1-092; 01/2016.


Shock, Hemorrhagic , Animals , Fluid Therapy , Hydroxyethyl Starch Derivatives , Prospective Studies , Resuscitation , Shock, Hemorrhagic/drug therapy , Swine
...