Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Sci Sports Exerc ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38595212

RESUMEN

INTRODUCTION: Endurance exercise at altitude can increase cardiac output and pulmonary vascular pressure to levels that may exceed the stress-tolerability of the alveolar-capillary unit. This study examined the effect of ultra-marathon trail racing at different altitudes (ranging from <1000 m to between 1500 - 2700 m) on alveolar-capillary recruitment and lung diffusion. METHODS: Cardiac and lung function were examined before and after an ultra-marathon in 67 runners (age:41 ± 9y, BMI:23 ± 2 kg/m2, 10 females), and following 12-24 h of recovery in a subset (n = 27). Cardiac biomarkers (cTnI & BNP) were assessed from whole blood, while lung fluid accumulation (comet tails), stroke volume (SV) and cardiac output (Q) were quantified via echocardiography. Lung diffusing capacity for carbon monoxide (DLco) and its components, alveolar membrane conductance (Dm) and capillary blood volume (Vc), were determined via a single-breath method at rest and during three stages of submaximal semi-recumbent cycling (20, 30, & 40 W). RESULTS: Average race time was 25 ± 12 h. From pre- to post-race, there was an increase in cardiac biomarkers (cTnI: 0.04 ± .02 vs 0.13 ± .03 ng/ml; BNP: 20 ± 2 vs 112 ± 21 pg/ml, p < 0.01) and lung comet tails (2 ± 1 vs 7 ± 6, p < 0.01), a decrease in resting and exercise SV (76 ± 2 vs 69 ± 2 ml; 40 W: 93 ± 2 vs 88 ± 2 ml, p < 0.01), and an elevation in Q at rest (4.1 ± 0.1 vs 4.6 ± 0.2 l/min, p < 0.01; 40 W: 7.3 ± 0.2 vs 7.4 ± 0.3 l/min, p = 0.899). Resting DLco and Vc decreased after the race (p < 0.01), while Dm was unchanged (p = 0.465); however, during the three stages of exercise DLco, Vc and Dm were all reduced from pre- to post-race (40 W: 36.3 ± 0.9 vs 33.0 ± 0.8 mL/min/mmHg; 83 ± 3 vs 73 ± 2 mL; 186 ± 6 vs 170 ± 7 mL/min/mmHg, respectively, p < 0.01). When corrected for alveolar volume and Q, DLco decreased from pre- to post-race (p < 0.01), and changes in DLco were similar for all ultra-marathon events (p > 0.05). CONCLUSIONS: Competing in an ultra-marathon leads to a transient increase in cardiac injury biomarkers, mild lung-fluid accumulation, and impairments in lung diffusion. Reductions in DLco are predominantly caused by a reduced Vc and possible pulmonary capillary de-recruitment at rest. However, impairments in alveolar-capillary recruitment and Dm both contribute to a fall in exertional DLco following an ultra-marathon. Perturbations in lung diffusion were evident across a range of event distances and varying environmental exposures.

2.
J Breath Res ; 18(2)2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38290132

RESUMEN

Exhaustive exercise can induce unique physiological responses in the lungs and other parts of the human body. The volatile organic compounds (VOCs) in exhaled breath are ideal for studying the effects of exhaustive exercise on the lungs due to the proximity of the breath matrix to the respiratory tract. As breath VOCs can originate from the bloodstream, changes in abundance should also indicate broader physiological effects of exhaustive exercise on the body. Currently, there is limited published data on the effects of exhaustive exercise on breath VOCs. Breath has great potential for biomarker analysis as it can be collected non-invasively, and capture real-time metabolic changes to better understand the effects of exhaustive exercise. In this study, we collected breath samples from a small group of elite runners participating in the 2019 Ultra-Trail du Mont Blanc ultra-marathon. The final analysis included matched paired samples collected before and after the race from 24 subjects. All 48 samples were analyzed using the Breath Biopsy Platform with GC-Orbitrap™ via thermal desorption gas chromatography-mass spectrometry. The Wilcoxon signed-rank test was used to determine whether VOC abundances differed between pre- and post-race breath samples (adjustedP-value < .05). We identified a total of 793 VOCs in the breath samples of elite runners. Of these, 63 showed significant differences between pre- and post-race samples after correction for multiple testing (12 decreased, 51 increased). The specific VOCs identified suggest the involvement of fatty acid oxidation, inflammation, and possible altered gut microbiome activity in response to exhaustive exercise. This study demonstrates significant changes in VOC abundance resulting from exhaustive exercise. Further investigation of VOC changes along with other physiological measurements can help improve our understanding of the effect of exhaustive exercise on the body and subsequent differences in VOCs in exhaled breath.


Asunto(s)
Líquidos Corporales , Compuestos Orgánicos Volátiles , Humanos , Pruebas Respiratorias/métodos , Compuestos Orgánicos Volátiles/análisis , Espiración , Cromatografía de Gases y Espectrometría de Masas/métodos , Líquidos Corporales/química
3.
High Alt Med Biol ; 24(3): 230-233, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37722011

RESUMEN

Parks, Jordan K, Courtney M. Wheatley-Guy, Glenn M. Stewart, Caitlin C. Fermoyle, Bryan J. Taylor, Jesse Schwartz, Briana Ziegler, Kay Johnson, Alice Gavet, Loïc Chabridon, Paul Robach, and Bruce D. Johnson. Lung "Comet Tails" in healthy individuals: accumulation or clearance of extravascular lung water? High Alt Med Biol. 24:230-233, 2023-Ultrasound lung comet tails (or B-lines) tend to be limited in number (<5) or absent under ultrasound examination, and the appearance of diffuse B-lines with lung sliding has been suggested to identify pulmonary edema. Clinical evaluation of B-lines has been utilized as a bedside test to assess pulmonary congestion in patients with heart failure. Exposure to altitude or prolonged exercise can alter fluid regulation and can lead to pulmonary congestion or edema. As such, B-lines have been utilized in the field to monitor for pathological lung fluid accumulation. However, ultrasound lung comet lines might not be as reliable for identifying extravascular lung water (EVLW) as previously thought in healthy individuals exercising at altitude where an increase in the number of ultrasound lung comets would reflect fluid buildup in the interstitial space of the alveoli and pulmonary capillaries. This report will focus on reviewing the literature and our data from a group of ultraendurance runners that completed the Ultra Trail Mont Blanc race that demonstrates that lung comet tails may not always be evidence of pathological fluid accumulation in healthy individuals and as such should be used to assess EVLW in concert with other diagnostic testing.


Asunto(s)
Agua Pulmonar Extravascular , Edema Pulmonar , Masculino , Humanos , Agua Pulmonar Extravascular/diagnóstico por imagen , Edema Pulmonar/diagnóstico por imagen , Alveolos Pulmonares , Altitud , Ejercicio Físico
4.
Front Physiol ; 13: 1018057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569769

RESUMEN

Introduction: Aircrew may experience rapidly oscillating inspired O2/N2 ratios owing to fluctuations in the on-board oxygen delivery systems (OBOG). Recent investigations suggest these oscillations may contribute to the constellation of physiologic events in aircrew of high-performance aircraft. Therefore, the purpose of this study was to determine whether these "operationally-relevant" environmental challenges may cause decrements in measures of pulmonary vascular physiology. Methods: Thirty healthy participants (Age: 29 ± 5 years) were recruited and assigned to one of the three exposures. Participants were instrumented for physiologic monitoring and underwent baseline cardiopulmonary physiology testing (ground level) consisting of a rebreathe method for quantifying pulmonary blood flow (Qc), pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (Dm). Ultrasound was used to quantify "comet tails" (measure of lung fluid balance). After baseline testing, the participants had two 45 min exposures to an altitude of 8,000 ft where they breathed from gas mixtures alternating between 80/20 and 30/70 O2/N2 ratios at the required frequency (30 s, 60 s, or 120 s), separated by repeat baseline measure. Immediately and 45 min after the second exposure, baseline measures were repeated. Results: We observed no changes in Qc, Dm or Vc during the 60 s exposures. In response to the 30 s oscillation exposure, there was a significantly reduced Qc and Vc at the post-testing period (p = 0.03). Additionally, exposure to the 120 s oscillations resulted in a significant decrease in Vc at the recovery testing period and an increase in the Dm/Vc ratio at both the post and recovery period (p < 0.01). Additionally, we observed no changes in the number of comet tails. Conclusion: These data suggest "operationally-relevant" changes in inspired gas concentrations may cause an acute, albeit mild pulmonary vascular derecruitment, reduced distention and/or mild pulmonary-capillary vasoconstriction, without significant changes in lung fluid balance or respiratory gas exchange. The operational relevance remains less clear, particularly in the setting of additional environmental stressors common during flight (e.g., g forces).

5.
Med Sci Sports Exerc ; 54(10): 1647-1656, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35653262

RESUMEN

PURPOSE: Despite a growing body of literature on the physiological responses to ultramarathon, there is a paucity of data in females. This study assessed the female physiological response to ultramarathon and compared the frequency of perturbations to a group of race- and time-matched males. METHODS: Data were collected from 53 contestants of an ultramarathon trail race at the Ultra-Trail du Mont-Blanc (UTMB®) in 2018/19. Before and within 2 h of the finish, participants underwent physiological assessments, including blood sampling for biomarkers (creatine kinase-MB isoenzyme [CK-MB], cardiac troponin I [cTnI], brain natriuretic peptide [BNP], and creatinine [Cr]), pulmonary function testing (spirometry, exhaled NO, diffusing capacities, and mouth pressures), and transthoracic ultrasound (lung comet tails, cardiac function). Data from eight female finishers (age = 36.6 ± 6.9 yr; finish time = 30:57 ± 11:36 h:min) were compared with a group of eight time-matched males (age = 40.3 ± 8.3 yr; finish time = 30:46 ± 10:32 h:min). RESULTS: Females exhibited significant pre- to postrace increases in BNP (25.8 ± 14.6 vs 140.9 ± 102.7 pg·mL -1 ; P = 0.007) and CK-MB (3.3 ± 2.4 vs 74.6 ± 49.6 IU·L -1 ; P = 0.005), whereas males exhibited significant pre- to postrace increases in BNP (26.6 ± 17.5 vs 96.4 ± 51.9 pg·mL -1 ; P = 0.002), CK-MB (7.2 ± 3.9 vs 108.8 ± 37.4 IU·L -1 ; P = 0.002), and Cr (1.06 ± 0.19 vs 1.23 ± 0.24 mg·dL -1 ; P = 0.028). Lung function declined in both groups, but males exhibited additional reductions in lung diffusing capacities (DL CO = 34.4 ± 5.7 vs 29.2 ± 6.9 mL⋅min -1 ⋅mm Hg -1 , P = 0.004; DL NO = 179.1 ± 26.2 vs 152.8 ± 33.4 mL⋅min -1 ⋅mm Hg -1 , P = 0.002) and pulmonary capillary blood volumes (77.4 ± 16.7 vs 57.3 ± 16.1 mL; P = 0.002). Males, but not females, exhibited evidence of mild postrace pulmonary edema. Pooled effect sizes for within-group pre- to postrace changes, for all variables, were generally larger in males versus females ( d = 0.86 vs 0.63). CONCLUSIONS: Ultramarathon negatively affects a range of physiological functions but generally evokes more frequent perturbations, with larger effect sizes, in males compared to females with similar race performances.


Asunto(s)
Mercurio , Troponina I , Adulto , Biomarcadores , Forma MB de la Creatina-Quinasa , Creatinina , Femenino , Humanos , Isoenzimas , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico
6.
Physiol Rep ; 6(2)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29368799

RESUMEN

Alveolar-capillary surface area for pulmonary gas exchange falls with aging, causing a reduction in lung diffusing capacity for carbon monoxide (DLCO). However, during exercise additional factors may influence DLCO, including pulmonary blood flow and pulmonary vascular pressures. First, we sought to determine the age-dependent effect of incremental exercise on pulmonary vascular pressures and DLCO. We also aimed to investigate the dependence of DLCO on pulmonary vascular pressures during exercise via sildenafil administration to reduce pulmonary smooth muscle tone. Nine younger (27 ± 4 years) and nine older (70 ± 3 years) healthy subjects performed seven 5-min exercise stages at rest, 0 (unloaded), 10, 15, 30, 50, and 70% of peak workload before and after sildenafil. DLCO, cardiac output (Q), and pulmonary artery and wedge pressure (mPAP and mPCWP; subset of participants) were collected at each stage. mPAP was higher (P = 0.029) and DLCO was lower (P = 0.009) throughout exercise in older adults; however, the rate of rise in mPAP and DLCO with increasing Q was not different. A reduction in pulmonary smooth muscle tone via sildenafil administration reduced mPAP, mPCWP, and the transpulmonary gradient (TPG = mPAP-mPCWP) in younger and older subjects (P < 0.001). DLCO was reduced following the reduction in mPAP and TPG, regardless of age (P < 0.001). In conclusion, older adults successfully adapt to age-dependent alterations in mPAP and DLCO. Furthermore, DLCO is dependent on pulmonary vascular pressures, likely to maintain adequate pulmonary capillary recruitment. The rise in pulmonary artery pressure with aging may be required to combat pulmonary vascular remodeling and maintain lung diffusing capacity, particularly during exercise.


Asunto(s)
Ejercicio Físico/fisiología , Envejecimiento Saludable/fisiología , Capacidad de Difusión Pulmonar/fisiología , Resistencia Vascular/fisiología , Adulto , Anciano , Femenino , Humanos , Pulmón/irrigación sanguínea , Masculino , Circulación Pulmonar/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...