Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39214853

RESUMEN

Learning new motor skills relies on neural plasticity within motor and limbic systems. This study uniquely combined diffusion tensor imaging and multiparametric mapping MRI to detail these neuroplasticity processes. We recruited 18 healthy male participants who underwent 960 min of training on a computer-based motion game, while 14 were scanned without training. Diffusion tensor imaging, which quantifies tissue microstructure by measuring the capacity for, and directionality of, water diffusion, revealed mostly linear changes in white matter across the corticospinal-cerebellar-thalamo-hippocampal circuit. These changes related to performance and reflected different responses to upper- and lower-limb training in brain areas with known somatotopic representations. Conversely, quantitative MRI metrics, sensitive to myelination and iron content, demonstrated mostly quadratic changes in gray matter related to performance and reflecting somatotopic representations within the same brain areas. Furthermore, while myelin and iron-sensitive multiparametric mapping MRI was able to describe time lags between different cortical brain systems, diffusion tensor imaging detected time lags within the white matter of the motor systems. These findings suggest that motor skill learning involves distinct phases of white and gray matter plasticity across the sensorimotor network, with the unique combination of diffusion tensor imaging and multiparametric mapping MRI providing complementary insights into the underlying neuroplastic responses.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Gris , Destreza Motora , Plasticidad Neuronal , Sustancia Blanca , Humanos , Masculino , Imagen de Difusión Tensora/métodos , Plasticidad Neuronal/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Destreza Motora/fisiología , Adulto , Adulto Joven , Aprendizaje/fisiología , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Imágenes de Resonancia Magnética Multiparamétrica/métodos
2.
Alzheimers Dement (Amst) ; 16(3): e12629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188923

RESUMEN

Training studies typically investigate the cumulative rather than the analytically challenging immediate effect of exercise on cognitive outcomes. We investigated the dynamic interplay between single-session exercise intensity and time-locked recognition speed-accuracy scores in older adults with Alzheimer's dementia (N = 17) undergoing a 24-week dual-task regime. We specified a state-of-the-art hierarchical Bayesian continuous-time dynamic model with fully connected state variables to analyze the bi-directional effects between physical and recognition scores over time. Higher physical performance was dynamically linked to improved recognition (-1.335, SD = 0.201, 95% Bayesian credible interval [BCI] [-1.725, -0.954]). The effect was short-term, lasting up to 5 days (-0.368, SD = 0.05, 95% BCI [-0.479, -0.266]). Clinical scores supported the validity of the model and observed temporal dynamics. Higher physical performance predicted improved recognition speed accuracy in a day-by-day manner, providing a proof-of-concept for the feasibility of linking exercise training and recognition in patients with Alzheimer's dementia. Highlights: Hierarchical Bayesian continuous-time dynamic modeling approachA total of 72 repeated physical exercise (PP) and integrated recognition speed-accuracy (IRSA) measurementsPP is dynamically linked to session-to-session variability of IRSAHigher PP improved IRSA in subsequent sessions in subjects with Alzheimer's dementiaShort-term effect: lasting up to 4 days after training session.

3.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743817

RESUMEN

Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional magnetic resonance imaging (fMRI) activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive aging. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analyzed subsequent memory fMRI data from individuals with SCD, MCI, and AD dementia as well as healthy controls (HC) and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-center DELCODE study (N = 468). Based on the individual participants' whole-brain fMRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity, and ApoE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to HC, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aß-positive and Aß-negative individuals in SCD and AD-rel, and between ApoE ε4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.

4.
Commun Biol ; 7(1): 635, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796622

RESUMEN

The capacity to learn enabled the human species to adapt to various challenging environmental conditions and pass important achievements on to the next generation. A growing body of research suggests links between neocortical folding properties and numerous aspects of human behavior, but their impact on enhanced human learning capacity remains unexplored. Here we leverage three training cohorts to demonstrate that higher levels of premotor cortical folding reliably predict individual long-term learning gains in a challenging new motor task, above and beyond initial performance differences. Individual folding-related predisposition to motor learning was found to be independent of cortical thickness and intracortical microstructure, but dependent on larger cortical surface area in premotor regions. We further show that learning-relevant features of cortical folding occurred in close spatial proximity to practice-induced structural brain plasticity. Our results suggest a link between neocortical surface folding and human behavioral adaptability.


Asunto(s)
Aprendizaje , Corteza Motora , Humanos , Corteza Motora/fisiología , Corteza Motora/anatomía & histología , Masculino , Aprendizaje/fisiología , Femenino , Adulto , Adulto Joven , Imagen por Resonancia Magnética , Plasticidad Neuronal/fisiología
5.
Brain ; 147(7): 2400-2413, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38654513

RESUMEN

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological ageing. It is not known whether divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± standard deviation, age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (n = 342), mild cognitive impairment (n = 118) or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid Alzheimer's disease biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5) as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test whether baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and mild cognitive impairment conversion rates of cognitively unimpaired participants and those with subjective cognitive decline. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy initially affected the medial temporal lobes, followed by further temporal regions and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological Alzheimer's disease biomarker levels, APOE ε4 carriership and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe, with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive Alzheimer's disease biomarkers and was associated with more generalized cognitive impairment. Limbic-predominant atrophy, in all participants and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of mild cognitive impairment conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, at both the subject and the group level, was excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for Alzheimer's disease in applied settings. The implementation of atrophy subtype- and stage-specific end points might increase the statistical power of pharmacological trials targeting early Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Atrofia/patología , Anciano , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Pruebas Neuropsicológicas , Estudios de Cohortes , Anciano de 80 o más Años , Memoria Episódica , Trastornos de la Memoria/patología
6.
Mol Psychiatry ; 29(4): 992-1004, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216727

RESUMEN

Neuroinflammation is a hallmark of Alzheimer's disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, Aß42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295); a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM; n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological Aß when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Encéfalo , Cognición , Disfunción Cognitiva , Inflamación , Imagen por Resonancia Magnética , Sustancia Blanca , Proteínas tau , Humanos , Masculino , Femenino , Biomarcadores/líquido cefalorraquídeo , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Encéfalo/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Cognición/fisiología , Inflamación/líquido cefalorraquídeo , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/líquido cefalorraquídeo , Sustancia Blanca/patología , Proteínas tau/líquido cefalorraquídeo , Estudios Longitudinales , Sustancia Gris/patología , Estudios de Cohortes
7.
J Neurosci ; 43(50): 8637-8648, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37875377

RESUMEN

The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood. Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplasticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29) who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reorganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.SIGNIFICANCE STATEMENT The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behaviorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task (DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance our knowledge about the neurobiological basis of motor learning in humans.


Asunto(s)
Encéfalo , Sustancia Blanca , Animales , Humanos , Masculino , Femenino , Lactante , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Neuritas/fisiología , Aprendizaje
8.
iScience ; 26(10): 107765, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37744028

RESUMEN

Successful explicit memory encoding is associated with inferior temporal activations and medial parietal deactivations, which are attenuated in aging. Here we used dynamic causal modeling (DCM) of functional magnetic resonance imaging data to elucidate effective connectivity patterns between hippocampus, parahippocampal place area (PPA), and precuneus during encoding of novel visual scenes. In 117 young adults, DCM revealed pronounced activating input from the PPA to the hippocampus and inhibitory connectivity from the PPA to the precuneus during novelty processing, with both being enhanced during successful encoding. This pattern could be replicated in two cohorts (N = 141 and 148) of young and older adults. In both cohorts, older adults selectively exhibited attenuated inhibitory PPA-precuneus connectivity, which correlated negatively with memory performance. Our results provide insight into the network dynamics underlying explicit memory encoding and suggest that age-related differences in memory-related network activity are, at least partly, attributable to altered temporo-parietal neocortical connectivity.

9.
Neurobiol Aging ; 129: 137-148, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329853

RESUMEN

The noradrenergic locus coeruleus (LC) is one of the protein pathology epicenters in neurodegenerative diseases. In contrast to PET (positron emission tomography), MRI (magnetic resonance imaging) offers the spatial resolution necessary to investigate the 3-4 mm wide and 1.5 cm long LC. However, standard data postprocessing is often too spatially imprecise to allow investigating the structure and function of the LC at the group level. Our analysis pipeline uses a combination of existing toolboxes (SPM12, ANTs, FSL, FreeSurfer), and is tailored towards achieving suitable spatial precision in the brainstem area. Its effectiveness is demonstrated using 2 datasets comprising both younger and older adults. We also suggest quality assessment procedures which allow to quantify the spatial precision obtained. Spatial deviations below 2.5 mm in the LC area are achieved, which is superior to current standard approaches. Relevant for ageing and clinical researchers interested in brainstem imaging, we provide a tool for more reliable analyses of structural and functional LC imaging data which can be also adapted for investigating other nuclei of the brainstem.


Asunto(s)
Locus Coeruleus , Enfermedades Neurodegenerativas , Humanos , Anciano , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Imagen por Resonancia Magnética/métodos , Envejecimiento , Enfermedades Neurodegenerativas/patología , Tomografía de Emisión de Positrones , Norepinefrina
10.
Alzheimers Res Ther ; 15(1): 97, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226207

RESUMEN

BACKGROUND: White matter hyperintensities (WMH) in subjects across the Alzheimer's disease (AD) spectrum with minimal vascular pathology suggests that amyloid pathology-not just arterial hypertension-impacts WMH, which in turn adversely influences cognition. Here we seek to determine the effect of both hypertension and Aß positivity on WMH, and their impact on cognition. METHODS: We analysed data from subjects with a low vascular profile and normal cognition (NC), subjective cognitive decline (SCD), and amnestic mild cognitive impairment (MCI) enrolled in the ongoing observational multicentre DZNE Longitudinal Cognitive Impairment and Dementia Study (n = 375, median age 70.0 [IQR 66.0, 74.4] years; 178 female; NC/SCD/MCI 127/162/86). All subjects underwent a rich neuropsychological assessment. We focused on baseline memory and executive function-derived from multiple neuropsychological tests using confirmatory factor analysis-, baseline preclinical Alzheimer's cognitive composite 5 (PACC5) scores, and changes in PACC5 scores over the course of three years (ΔPACC5). RESULTS: Subjects with hypertension or Aß positivity presented the largest WMH volumes (pFDR < 0.05), with spatial overlap in the frontal (hypertension: 0.42 ± 0.17; Aß: 0.46 ± 0.18), occipital (hypertension: 0.50 ± 0.16; Aß: 0.50 ± 0.16), parietal lobes (hypertension: 0.57 ± 0.18; Aß: 0.56 ± 0.20), corona radiata (hypertension: 0.45 ± 0.17; Aß: 0.40 ± 0.13), optic radiation (hypertension: 0.39 ± 0.18; Aß: 0.74 ± 0.19), and splenium of the corpus callosum (hypertension: 0.36 ± 0.12; Aß: 0.28 ± 0.12). Elevated global and regional WMH volumes coincided with worse cognitive performance at baseline and over 3 years (pFDR < 0.05). Aß positivity was negatively associated with cognitive performance (direct effect-memory: - 0.33 ± 0.08, pFDR < 0.001; executive: - 0.21 ± 0.08, pFDR < 0.001; PACC5: - 0.29 ± 0.09, pFDR = 0.006; ΔPACC5: - 0.34 ± 0.04, pFDR < 0.05). Splenial WMH mediated the relationship between hypertension and cognitive performance (indirect-only effect-memory: - 0.05 ± 0.02, pFDR = 0.029; executive: - 0.04 ± 0.02, pFDR = 0.067; PACC5: - 0.05 ± 0.02, pFDR = 0.030; ΔPACC5: - 0.09 ± 0.03, pFDR = 0.043) and WMH in the optic radiation partially mediated that between Aß positivity and memory (indirect effect-memory: - 0.05 ± 0.02, pFDR = 0.029). CONCLUSIONS: Posterior white matter is susceptible to hypertension and Aß accumulation. Posterior WMH mediate the association between these pathologies and cognitive dysfunction, making them a promising target to tackle the downstream damage related to the potentially interacting and potentiating effects of the two pathologies. TRIAL REGISTRATION: German Clinical Trials Register (DRKS00007966, 04/05/2015).


Asunto(s)
Enfermedad de Alzheimer , Hipertensión , Sustancia Blanca , Humanos , Femenino , Anciano , Péptidos beta-Amiloides , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Hipertensión/complicaciones , Hipertensión/diagnóstico por imagen
11.
Neuroimage ; 274: 120128, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116765

RESUMEN

Motor skill learning relies on neural plasticity in the motor and limbic systems. However, the spatial and temporal characteristics of these changes-and their microstructural underpinnings-remain unclear. Eighteen healthy males received 1 h of training in a computer-based motion game, 4 times a week, for 4 consecutive weeks, while 14 untrained participants underwent scanning only. Performance improvements were observed in all trained participants. Serial myelin- and iron-sensitive multiparametric mapping at 3T during this period of intensive motor skill acquisition revealed temporally and spatially distributed, performance-related microstructural changes in the grey and white matter across a corticospinal-cerebellar-hippocampal circuit. Analysis of the trajectory of these transient changes suggested time-shifted cascades of plasticity from the dominant sensorimotor system to the contralateral hippocampus. In the cranial corticospinal tracts, changes in myelin-sensitive metrics during training in the posterior limb of the internal capsule were of greater magnitude in those who trained their upper limbs vs. lower limb trainees. Motor skill learning is associated with waves of grey and white matter plasticity, across a broad sensorimotor network.


Asunto(s)
Destreza Motora , Sustancia Blanca , Masculino , Humanos , Aprendizaje , Sustancia Blanca/diagnóstico por imagen , Extremidad Superior , Vaina de Mielina , Plasticidad Neuronal
12.
Alzheimers Res Ther ; 15(1): 50, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915139

RESUMEN

BACKGROUND: The NIA-AA proposed amyloid-tau-neurodegeneration (ATN) as a classification system for AD biomarkers. The amyloid cascade hypothesis (ACH) implies a sequence across ATN groups that patients might undergo during transition from healthy towards AD: A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+. Here we assess the evidence for monotonic brain volume decline for this particular (amyloid-conversion first, tau-conversion second, N-conversion last) and alternative progressions using voxel-based morphometry (VBM) in a large cross-sectional MRI cohort. METHODS: We used baseline data of the DELCODE cohort of 437 subjects (127 controls, 168 SCD, 87 MCI, 55 AD patients) which underwent lumbar puncture, MRI scanning, and neuropsychological assessment. ATN classification was performed using CSF-Aß42/Aß40 (A+/-), CSF phospho-tau (T+/-), and adjusted hippocampal volume or CSF total-tau (N+/-). We compared voxel-wise model evidence for monotonic decline of gray matter volume across various sequences over ATN groups using the Bayesian Information Criterion (including also ROIs of Braak stages). First, face validity of the ACH transition sequence A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+ was compared against biologically less plausible (permuted) sequences among AD continuum ATN groups. Second, we evaluated evidence for 6 monotonic brain volume progressions from A-T-N- towards A+T+N+ including also non-AD continuum ATN groups. RESULTS: The ACH-based progression A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+ was consistent with cognitive decline and clinical diagnosis. Using hippocampal volume for operationalization of neurodegeneration (N), ACH was most evident in 9% of gray matter predominantly in the medial temporal lobe. Many cortical regions suggested alternative non-monotonic volume progressions over ACH progression groups, which is compatible with an early amyloid-related tissue expansion or sampling effects, e.g., due to brain reserve. Volume decline in 65% of gray matter was consistent with a progression where A status converts before T or N status (i.e., ACH/ANT) when compared to alternative sequences (TAN/TNA/NAT/NTA). Brain regions earlier affected by tau tangle deposition (Braak stage I-IV, MTL, limbic system) present stronger evidence for volume decline than late Braak stage ROIs (V/VI, cortical regions). Similar findings were observed when using CSF total-tau for N instead. CONCLUSION: Using the ATN classification system, early amyloid status conversion (before tau and neurodegeneration) is associated with brain volume loss observed during AD progression. The ATN system and the ACH are compatible with monotonic progression of MTL atrophy. TRIAL REGISTRATION: DRKS00007966, 04/05/2015, retrospectively registered.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Estudios Transversales , Teorema de Bayes , Péptidos beta-Amiloides , Disfunción Cognitiva/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Proteínas Amiloidogénicas , Proteínas tau , Biomarcadores
13.
Alzheimers Res Ther ; 15(1): 43, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855049

RESUMEN

BACKGROUND: In preclinical Alzheimer's disease, it is unclear why some individuals with amyloid pathologic change are asymptomatic (stage 1), whereas others experience subjective cognitive decline (SCD, stage 2). Here, we examined the association of stage 1 vs. stage 2 with structural brain reserve in memory-related brain regions. METHODS: We tested whether the volumes of hippocampal subfields and parahippocampal regions were larger in individuals at stage 1 compared to asymptomatic amyloid-negative older adults (healthy controls, HCs). We also tested whether individuals with stage 2 would show the opposite pattern, namely smaller brain volumes than in amyloid-negative individuals with SCD. Participants with cerebrospinal fluid (CSF) biomarker data and bilateral volumetric MRI data from the observational, multi-centric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study were included. The sample comprised 95 amyloid-negative and 26 amyloid-positive asymptomatic participants as well as 104 amyloid-negative and 47 amyloid-positive individuals with SCD. Volumes were based on high-resolution T2-weighted images and automatic segmentation with manual correction according to a recently established high-resolution segmentation protocol. RESULTS: In asymptomatic individuals, brain volumes of hippocampal subfields and of the parahippocampal cortex were numerically larger in stage 1 compared to HCs, whereas the opposite was the case in individuals with SCD. MANOVAs with volumes as dependent data and age, sex, years of education, and DELCODE site as covariates showed a significant interaction between diagnosis (asymptomatic versus SCD) and amyloid status (Aß42/40 negative versus positive) for hippocampal subfields. Post hoc paired comparisons taking into account the same covariates showed that dentate gyrus and CA1 volumes in SCD were significantly smaller in amyloid-positive than negative individuals. In contrast, CA1 volumes were significantly (p = 0.014) larger in stage 1 compared with HCs. CONCLUSIONS: These data indicate that HCs and stages 1 and 2 do not correspond to linear brain volume reduction. Instead, stage 1 is associated with larger than expected volumes of hippocampal subfields in the face of amyloid pathology. This indicates a brain reserve mechanism in stage 1 that enables individuals with amyloid pathologic change to be cognitively normal and asymptomatic without subjective cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Reserva Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Proteínas Amiloidogénicas , Corteza Cerebral , Disfunción Cognitiva/diagnóstico por imagen
14.
Alzheimers Dement ; 19(2): 487-497, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35451563

RESUMEN

INTRODUCTION: It is uncertain whether subjective cognitive decline (SCD) in individuals who seek medical help serves the identification of the initial symptomatic stage 2 of the Alzheimer's disease (AD) continuum. METHODS: Cross-sectional and longitudinal data from the multicenter, memory clinic-based DELCODE study. RESULTS: The SCD group showed slightly worse cognition as well as more subtle functional and behavioral symptoms than the control group (CO). SCD-A+ cases (39.3% of all SCD) showed greater hippocampal atrophy, lower cognitive and functional performance, and more behavioral symptoms than CO-A+. Amyloid concentration in the CSF had a greater effect on longitudinal cognitive decline in SCD than in the CO group. DISCUSSION: Our data suggests that SCD serves the identification of stage 2 of the AD continuum and that stage 2, operationalized as SCD-A+, is associated with subtle, but extended impact of AD pathology in terms of neurodegeneration, symptoms and clinical progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Estudios Transversales , Disfunción Cognitiva/diagnóstico , Cognición , Biomarcadores , Proteínas tau
15.
Neuroimage ; 262: 119529, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35926761

RESUMEN

Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of PD, R1, and MTsat maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from PD to R1 and decreased from PD to MTsat by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Neuroimagen/métodos
16.
Neurology ; 99(8): e775-e788, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35995589

RESUMEN

BACKGROUND AND OBJECTIVES: We assessed whether novelty-related fMRI activity in medial temporal lobe regions and the precuneus follows an inverted U-shaped pattern across the clinical spectrum of increased Alzheimer disease (AD) risk as previously suggested. Specifically, we tested for potentially increased activity in individuals with a higher AD risk due to subjective cognitive decline (SCD) or mild cognitive impairment (MCI). We further tested whether activity differences related to diagnostic groups were accounted for by CSF markers of AD or brain atrophy. METHODS: We studied 499 participants aged 60-88 years from the German Center for Neurodegenerative Diseases Longitudinal Cognitive Impairment and Dementia Study (DELCODE) who underwent task-fMRI. Participants included 163 cognitively normal (healthy control, HC) individuals, 222 SCD, 82 MCI, and 32 patients with clinical diagnosis of mild AD. CSF levels of ß-amyloid 42/40 ratio and phosphorylated-tau181 were available from 232 participants. We used region-based analyses to assess novelty-related activity (novel > highly familiar scenes) in entorhinal cortex, hippocampus, and precuneus as well as whole-brain voxel-wise analyses. First, general linear models tested differences in fMRI activity between participant groups. Complementary regression models tested quadratic relationships between memory impairment and activity. Second, relationships of activity with AD CSF biomarkers and brain volume were analyzed. Analyses were controlled for age, sex, study site, and education. RESULTS: In the precuneus, we observed an inverted U-shaped pattern of novelty-related activity across groups, with higher activity in SCD and MCI compared with HC, but not in patients with AD who showed relatively lower activity than MCI. This nonlinear pattern was confirmed by a quadratic relationship between memory impairment and precuneus activity. Precuneus activity was not related to AD biomarkers or brain volume. In contrast to the precuneus, hippocampal activity was reduced in AD dementia compared with all other groups and related to AD biomarkers. DISCUSSION: Novelty-related activity in the precuneus follows a nonlinear pattern across the clinical spectrum of increased AD risk. Although the underlying mechanism remains unclear, increased precuneus activity might represent an early signature of memory impairment. Our results highlight the nonlinearity of activity alterations that should be considered in clinical trials using functional outcome measures or targeting hyperactivity.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen
17.
Front Digit Health ; 4: 892997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721797

RESUMEN

Sensitive and frequent digital remote memory assessments via mobile devices hold the promise to facilitate the detection of cognitive impairment and decline. However, in order to be successful at scale, cognitive tests need to be applicable in unsupervised settings and confounding factors need to be understood. This study explored the feasibility of completely unsupervised digital cognitive assessments using three novel memory tasks in a Citizen Science project across Germany. To that end, the study aimed to identify factors associated with stronger participant retention, to examine test-retest reliability and the extent of practice effects, as well as to investigate the influence of uncontrolled settings such as time of day, delay between sessions or screen size on memory performance. A total of 1,407 adults (aged 18-89) participated in the study for up to 12 weeks, completing weekly memory tasks in addition to short questionnaires regarding sleep duration, subjective cognitive complaints as well as cold symptoms. Participation across memory tasks was pseudorandomized such that individuals were assigned to one of three memory paradigms resulting in three otherwise identical sub-studies. One hundred thirty-eight participants contributed to two of the three paradigms. Critically, for each memory task 12 independent parallel test sets were used to minimize effects of repeated testing. First, we observed a mean participant retention time of 44 days, or 4 active test sessions, and 77.5% compliance to the study protocol in an unsupervised setting with no contact between participants and study personnel, payment or feedback. We identified subject-level factors that contributed to higher retention times. Second, we found minor practice effects associated with repeated cognitive testing, and reveal evidence for acceptable-to-good retest reliability of mobile testing. Third, we show that memory performance assessed through repeated digital assessments was strongly associated with age in all paradigms, and individuals with subjectively reported cognitive decline presented lower mnemonic discrimination accuracy compared to non-complaining participants. Finally, we identified design-related factors that need to be incorporated in future studies such as the time delay between test sessions. Our results demonstrate the feasibility of fully unsupervised digital remote memory assessments and identify critical factors to account for in future studies.

18.
Neuroimage ; 256: 119249, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35487455

RESUMEN

Multiparameter mapping (MPM) is a quantitative MRI protocol that is promising for studying microstructural brain changes in vivo with high specificity. Reliability values are an important prior knowledge for efficient study design and facilitating replicable findings in development, aging and neuroplasticity research. To explore longitudinal reliability of MPM we acquired the protocol in 31 healthy young subjects twice over a rescan interval of 4 weeks. We assessed the within-subject coefficient of variation (WCV), the between-subject coefficient of variation (BCV), and the intraclass correlation coefficient (ICC). Using these metrics, we investigated the reliability of (semi-) quantitative magnetization transfer saturation (MTsat), proton density (PD), transversal relaxation (R2*) and longitudinal relaxation (R1). To increase relevance for explorative studies in development and training-induced plasticity, we assess reliability both on local voxel- as well as ROI-level. Finally, we disentangle contributions and interplay of within- and between-subject variability to ICC and assess the optimal degree of spatial smoothing applied to the data. We reveal evidence that voxelwise ICC reliability of MPMs is moderate to good with median values in cortex (subcortical GM): MT: 0.789 (0.447) PD: 0.553 (0.264) R1: 0.555 (0.369) R2*: 0.624 (0.477). The Gaussian smoothing kernel of 2 to 4 mm FWHM resulted in optimal reproducibility. We discuss these findings in the context of longitudinal intervention studies and the application to research designs in neuroimaging field.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Protones , Reproducibilidad de los Resultados
19.
Brain ; 145(4): 1473-1485, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35352105

RESUMEN

We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A-) of amyloid pathology was defined by CSF amyloid-ß42 (Aß42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A- individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aß42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aß42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A- groups. After classifying this matched sample for phospho-tau pathology (T-/T+), individuals with A+/T+ were significantly more memory-impaired than A-/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer's disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer's disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas , Apolipoproteínas E/genética , Biomarcadores , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Estudios Transversales , Hipocampo/metabolismo , Humanos , Proteínas tau/metabolismo
20.
Hum Brain Mapp ; 43(6): 1973-1983, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112434

RESUMEN

Motion during the acquisition of magnetic resonance imaging (MRI) data degrades image quality, hindering our capacity to characterise disease in patient populations. Quality control procedures allow the exclusion of the most affected images from analysis. However, the criterion for exclusion is difficult to determine objectively and exclusion can lead to a suboptimal compromise between image quality and sample size. We provide an alternative, data-driven solution that assigns weights to each image, computed from an index of image quality using restricted maximum likelihood. We illustrate this method through the analysis of quantitative MRI data. The proposed method restores the validity of statistical tests, and performs near optimally in all brain regions, despite local effects of head motion. This method is amenable to the analysis of a broad type of MRI data and can accommodate any measure of image quality.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Movimiento (Física) , Control de Calidad , Tamaño de la Muestra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA