Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915518

RESUMEN

Epigenetic modifications to DNA and chromatin control oncogenic and tumor suppressive mechanisms in melanoma. EZH2, the catalytic component of the Polycomb repressive complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2 Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by EZH2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models we further investigated the role of pathways downstream of EZH2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of an Ezh2 Y641F epigenetic state. We found that expression of Atg7 is largely dependent on Stat3 expression and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8+ T cells and reduced myelosuppressive cell infiltration in the tumor microenvironment, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.

2.
Front Oncol ; 13: 1233953, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664059

RESUMEN

Mutations in chromatin modifying genes frequently occur in many kinds of cancer. Most mechanistic studies focus on their canonical functions, while therapeutic approaches target their enzymatic activity. Recent studies, however, demonstrate that non-canonical functions of chromatin modifiers may be equally important and therapeutically actionable in different types of cancer. One epigenetic regulator that demonstrates such a dual role in cancer is the histone methyltransferase EZH2. EZH2 is a core component of the polycomb repressive complex 2 (PRC2), which plays a crucial role in cell identity, differentiation, proliferation, stemness and plasticity. While much of the regulatory functions and oncogenic activity of EZH2 have been attributed to its canonical, enzymatic activity of methylating lysine 27 on histone 3 (H3K27me3), a repressive chromatin mark, recent studies suggest that non-canonical functions that are independent of H3K27me3 also contribute towards the oncogenic activity of EZH2. Contrary to PRC2's canonical repressive activity, mediated by H3K27me3, outside of the complex EZH2 can directly interact with transcription factors and oncogenes to activate gene expression. A more focused investigation into these non-canonical interactions of EZH2 and other epigenetic/chromatin regulators may uncover new and more effective therapeutic strategies. Here, we summarize major findings on the non-canonical functions of EZH2 and how they are related to different aspects of carcinogenesis.

3.
Oncogene ; 41(46): 4983-4993, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220978

RESUMEN

Enhancer of Zeste Homolog 2 (EZH2) is the catalytic component of the Polycomb Repressive Complex 2, a chromatin modifying complex, which mediates methylation of lysine 27 on histone 3 (H3K27me3), a repressive chromatin mark. Genetic alterations in EZH2 in melanoma include amplifications and activating point mutations at tyrosine 641 (Y641) whose underlying oncogenic mechanisms remain largely unknown. Here, we found that expression of Ezh2Y641F causes upregulation of a subset of interferon-regulated genes in melanoma cells. Upregulation of these genes was not a direct effect of changes in H3K27me3, but via a non-canonical interaction between Ezh2 and Signal Transducer and Activator of Transcription 3 (Stat3). Ezh2 and Stat3 together function as transcriptional activators to mediate gene activation of numerous genes, including MHC Class 1b antigen processing genes. Furthermore, expression of Stat3 is required to maintain an anti-tumor immune response in Ezh2Y641F melanomas and to prevent melanoma progression and recurrence.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Melanoma , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Histonas/genética , Histonas/metabolismo , Presentación de Antígeno , Mutación , Melanoma/genética , Cromatina/genética
4.
JBMR Plus ; 3(7): e10171, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31372585

RESUMEN

Osteocytes are long-lived, highly interconnected, terminally differentiated osteoblasts that reside within mineralized bone matrix. They constitute about 95% of adult bone cells and play important functions including in the regulation of bone remodeling, phosphate homeostasis, and mechanical stimuli sensing and response. However, the role of osteocytes in the pathogenesis of congenital diseases of abnormal bone matrix is poorly understood. This study characterized in vivo transcriptional changes in osteocytes from CrtapKO and oim/oim mouse models of osteogenesis imperfecta (OI) compared with wild-type (WT) control mice. To do this, RNA was extracted from osteocyte-enriched cortical femurs and tibias, sequenced and subsequently analyzed to identify differentially expressed transcripts. These models were chosen because they mimic two types of OI with different genetic mutations that result in distinct type I collagen defects. A large number of transcripts were dysregulated in either model of OI, but 281 of them were similarly up- or downregulated in both compared with WT controls. Conversely, very few transcripts were differentially expressed between the CrtapKO and oim/oim mice, indicating that distinct alterations in type I collagen can lead to shared pathogenic processes and similar phenotypic outcomes. Bioinformatics analyses identified several critical hubs of dysregulation that were enriched in annotation terms such as development and differentiation, ECM and collagen fibril organization, cell adhesion, signaling, regulatory processes, pattern binding, chemotaxis, and cell projections. The data further indicated alterations in important signaling pathways such as WNT and TGF-ß but also highlighted new candidate genes to pursue in future studies. Overall, our study suggested that the osteocyte transcriptome is broadly dysregulated in OI with potential long-term consequences at the cellular level, which deserve further investigations. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

5.
AIMS Genet ; 5(1): 24-40, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417103

RESUMEN

The Leprecan protein family which includes the prolyl 3-hydroxylase enzymes (P3H1, P3H2, and P3H3), the closely related cartilage-associated protein (CRTAP), and SC65 (Synaptonemal complex 65, aka P3H4, LEPREL4), is involved in the post-translational modification of fibrillar collagens. Mutations in CRTAP, P3H1 and P3H2 cause human genetic diseases. We recently showed that SC65 forms a stable complex in the endoplasmic reticulum with P3H3 and lysyl hydroxylase 1 and that loss of this complex leads to defective collagen lysyl hydroxylation and causes low bone mass and skin fragility. Interestingly, SC65 was initially described as a synaptonemal complex-associated protein, suggesting a potential additional role in germline cells. In the present study, we describe the expression of SC65, CRTAP and other Leprecan proteins in postnatal mouse reproductive organs. We detect SC65 expression in peritubular cells of testis up to 4 weeks of age but not in cells within seminiferous tubules, while its expression is maintained in ovarian follicles until adulthood. Similar to bone and skin, SC65 and P3H3 are also tightly co-expressed in testis and ovary. Moreover, we show that CRTAP, a protein normally involved in collagen prolyl 3-hydroxylation, is highly expressed in follicles and stroma of the ovary and in testes interstitial cells at 4 weeks of age, germline cells and mature sperm. Importantly, CrtapKO mice have a mild but significant increase in morphologically abnormal mature sperm (17% increase compared to WT). These data suggest a role for the Leprecans in the post-translational modification of collagens expressed in the stroma of the reproductive organs. While we could not confirm that SC65 is part of the synaptonemal complex, the expression of CRTAP in the seminiferous tubules and in mature sperm suggest a role in the testis germ cell lineage and sperm morphogenesis.

6.
Bone Rep ; 9: 61-73, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30105276

RESUMEN

Osteogenesis imperfecta (OI) is characterized by osteopenia and bone fragility, and OI patients during growth often exhibit high bone turnover with the net result of low bone mass. Recent evidence shows that osteocytes significantly affect bone remodeling under physiological and pathological conditions through production of osteoclastogenic cytokines. The receptor activator of nuclear factor kappa-B ligand (RANKL) produced by osteocytes for example, is a critical mediator of bone loss caused by ovariectomy, low-calcium diet, unloading and glucocorticoid treatment. Because OI bone has increased density of osteocytes and these cells are embedded in matrix with abnormal type I collagen, we hypothesized that osteocyte-derived RANKL contributes to the OI bone phenotype. In this study, the conditional loss of RANKL in osteocytes in oim/oim mice (oim-RANKL-cKO) resulted in dramatically increased cancellous bone mass in both the femur and lumbar spine compared to oim/oim mice. Bone cortical thickness increased significantly only in spine but ultimate bone strength in the long bone and spine was minimally improved in oim-RANKL-cKO mice compared to oim/oim mice. Furthermore, unlike previous findings, we report that oim/oim mice do not exhibit high bone turnover suggesting that their low bone mass is likely due to defective bone formation and not increased bone resorption. The loss of osteocyte-derived RANKL further diminished parameters of formation in oim-RANKL-cKO. Our results indicate that osteocytes contribute significantly to the low bone mass observed in OI and the effect of loss of RANKL from these cells is similar to its systemic inhibition.

7.
PLoS Genet ; 12(4): e1006002, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27119146

RESUMEN

Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis.


Asunto(s)
Autoantígenos/metabolismo , Colágeno/biosíntesis , Retículo Endoplásmico/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Autoantígenos/genética , Huesos/fisiología , Línea Celular , Colágeno/metabolismo , Ciclofilinas/metabolismo , Matriz Extracelular/metabolismo , Hidroxilación/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética
8.
J Pharmacol Exp Ther ; 346(3): 350-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23801678

RESUMEN

Marijuana substitutes often contain blends of multiple psychoactive synthetic cannabinoids (SCBs), including the prevalent SCBs (1-pentyl-1H-indole-3-yl)-1-naphthalenyl-methanone (JWH-018) and (1-butyl-1H-indole-3-yl)-1-naphthalenyl-methanone (JWH-073). Because SCBs are frequently used in combinations, we hypothesized that coadministering multiple SCBs induces synergistic drug-drug interactions. Drug-drug interactions between JWH-018 and JWH-073 were investigated in vivo for Δ(9)-tetrahydrocannabinol (Δ(9)-THC)-like discriminative stimulus effects, analgesia, task disruption, and hypothermia. Combinations (JWH-018:JWH-073) of these drugs were administered to mice in assays of Δ(9)-THC discrimination, tail-immersion, and food-maintained responding, and rectal temperatures were measured. Synergism occurred in the Δ(9)-THC discrimination assay for two constant dose ratio combinations (1:3 and 1:1). A 1:1 and 2:3 dose ratio induced additivity and synergy, respectively, in the tail-immersion assay. Both 1:1 and 2:3 dose ratios were additive for hypothermia, whereas a 1:3 dose ratio induced subadditive suppression of food-maintained responding. In vitro drug-drug interactions were assessed using competition receptor-binding assays employing mouse brain homogenates and cannabinoid 1 receptor (CB1R)-mediated inhibition of adenylyl cyclase activity in Neuro2A wild-type cells. Interestingly, synergy occurred in the competition receptor-binding assay for two dose ratios (1:5 and 1:10), but not in the adenylyl cyclase activity assay (1:5). Altogether, these data indicate that drug-drug interactions between JWH-018 and JWH-073 are effect- and ratio-dependent and may increase the relative potency of marijuana substitutes for subjective Δ(9)-THC-like effects. Combinations may improve the therapeutic profile of cannabinoids, considering that analgesia but not hypothermia or task disruption was potentiated. Importantly, synergy in the competition receptor-binding assay suggests multiple CB1R-SCB binding sites.


Asunto(s)
Drogas Ilícitas , Indoles/efectos adversos , Indoles/uso terapéutico , Naftalenos/efectos adversos , Naftalenos/uso terapéutico , Dolor/tratamiento farmacológico , Trastornos Relacionados con Sustancias , Inhibidores de Adenilato Ciclasa , Animales , Unión Competitiva/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Células Cultivadas , Condicionamiento Operante/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Sinergismo Farmacológico , Femenino , Generalización Psicológica/efectos de los fármacos , Hipotermia/inducido químicamente , Hipotermia/fisiopatología , Técnicas In Vitro , Masculino , Membranas/efectos de los fármacos , Membranas/metabolismo , Ratones , Dimensión del Dolor/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Receptor Cannabinoide CB1/efectos de los fármacos
9.
J Neurosci Methods ; 212(2): 338-43, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23164960

RESUMEN

We have developed a novel, low-cost device designed to monitor and modulate locomotor activity in murine subjects. This technology has immediate application to the study of effects of physical exercise on various neurobiological endpoints, and will also likely be useful in the study of psychomotor sensitization and drug addiction. Here we demonstrate the capacity of these devices to establish locomotor activity as an operant response reinforced by food pellet presentations, and show that schedules of reinforcement can reliably control this behavior. Importantly, these data show that varying degrees of increased locomotor activity (in other words, "exercise") can be elicited and maintained in mice by manipulating the schedule of reinforcement. Our findings argue that the present technology might reduce the imposition of stress and motivational bias inherent in more traditional procedures for establishing exercise in laboratory rodents, while allowing for true random assignment to experimental groups. As interest in physical exercise as a modulating factor in numerous clinical conditions continues to grow, technologies like the one proposed here are likely to become critical in conducting future experiments along these lines.


Asunto(s)
Condicionamiento Operante/fisiología , Actividad Motora/fisiología , Condicionamiento Físico Animal/instrumentación , Animales , Masculino , Ratones , Condicionamiento Físico Animal/métodos
10.
Neuropsychopharmacology ; 38(4): 563-73, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23212455

RESUMEN

In recent years, synthetic analogues of naturally occurring cathinone have emerged as psychostimulant-like drugs of abuse in commercial 'bath salt' preparations. 3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of these illicit products, and its structural similarities to the more well-known drugs of abuse 3,4-methylenedioxymethamphetamine (MDMA), and methamphetamine (METH) suggest that it may have similar in vivo effects to these substances. In these studies, adult male NIH Swiss mice were trained to discriminate 0.3 mg/kg MDPV from saline, and the interoceptive effects of a range of substitution doses of MDPV, MDMA, and METH were then assessed. In separate groups of mice, surgically implanted radiotelemetry probes simultaneously monitored thermoregulatory and locomotor responses to various doses of MDPV and MDMA, as a function of ambient temperature. We found that mice reliably discriminated the MDPV training dose from saline and that cumulative doses of MDPV, MDMA, and METH fully substituted for the MDPV training stimulus. All three drugs had similar ED(50) values in this procedure. Stimulation of motor activity was observed following administration of a wide range of MDPV doses (1-30 mg/kg), and the warm ambient temperature potentiated motor activity and elicited profound stereotypy and self-injurious behavior at 30 mg/kg. In contrast, MDPV-induced hyperthermic effects were observed in only the warm ambient environment. This pattern of effects is in sharp contrast to MDMA, where ambient temperature interacts with thermoregulation, but not locomotor activity. These studies suggest that although the interoceptive effects of MDPV are similar to those of MDMA and METH, direct effects on thermoregulatory processes and locomotor activity are likely mediated by different mechanisms than those of MDMA.


Asunto(s)
Benzodioxoles/farmacología , Regulación de la Temperatura Corporal/efectos de los fármacos , Drogas de Diseño/farmacología , Discriminación en Psicología/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Pirrolidinas/farmacología , Animales , Regulación de la Temperatura Corporal/fisiología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Discriminación en Psicología/fisiología , Masculino , Ratones , Actividad Motora/fisiología , Cathinona Sintética
11.
Neuropharmacology ; 63(5): 905-15, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22771770

RESUMEN

Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). AM-251 and rimonabant are CB1R antagonist/inverse agonists employed to validate opioid-cannabinoid interactions, presumed to act selectively at CB1Rs. Therefore, the potential for direct action of these antagonists at MORs is rarely considered. This study determined if AM-251 and/or rimonabant directly bind and modulate the function of MORs. Surprisingly, AM-251 and rimonabant, but not a third CB1R inverse agonist AM-281, bind with mid-nanomolar affinity to human MORs with a rank order of affinity (K(i)) of AM-251 (251 nM) > rimonabant (652 nM) > AM281 (2135 nM). AM-251 and rimonabant, but not AM-281, also competitively antagonize morphine induced G-protein activation in CHO-hMOR cell homogenates (K(b) = 719 or 1310 nM, respectively). AM-251 and rimonabant block morphine inhibition of cAMP production, while only AM-251 elicits cAMP rebound in CHO-hMOR cells chronically exposed to morphine. AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice.


Asunto(s)
Analgésicos no Narcóticos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Narcóticos/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/agonistas , Receptores Opioides mu/antagonistas & inhibidores , Analgésicos no Narcóticos/efectos adversos , Analgésicos no Narcóticos/metabolismo , Analgésicos no Narcóticos/uso terapéutico , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/antagonistas & inhibidores , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Unión Competitiva , Células CHO , Agonistas de Receptores de Cannabinoides/efectos adversos , Agonistas de Receptores de Cannabinoides/metabolismo , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cricetinae , Cricetulus , Agonismo Inverso de Drogas , Humanos , Cinética , Ratones , Ratones Endogámicos , Morfolinas/efectos adversos , Morfolinas/metabolismo , Morfolinas/farmacología , Antagonistas de Narcóticos/efectos adversos , Antagonistas de Narcóticos/metabolismo , Antagonistas de Narcóticos/uso terapéutico , Piperidinas/efectos adversos , Piperidinas/metabolismo , Piperidinas/uso terapéutico , Pirazoles/efectos adversos , Pirazoles/metabolismo , Pirazoles/uso terapéutico , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Rimonabant
12.
PLoS One ; 6(7): e21917, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21755008

RESUMEN

BACKGROUND: K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9)-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R). METHODS/PRINCIPAL FINDINGS: JWH-018, five potential monohydroxylated metabolites (M1-M5), and one carboxy metabolite (M6) were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3)H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35)S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i) values that were lower than or equivalent to Δ(9)-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9)-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9)-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251. CONCLUSIONS/SIGNIFICANCE: Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9)-THC, may contribute to the greater prevalence of adverse effects observed with JWH-018-containing products relative to cannabis.


Asunto(s)
Indoles/metabolismo , Fase I de la Desintoxicación Metabólica , Naftalenos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Temperatura Corporal/efectos de los fármacos , Dronabinol/metabolismo , Dronabinol/farmacología , Hidroxilación , Indoles/química , Ratones , Actividad Motora/efectos de los fármacos , Naftalenos/química , Receptor Cannabinoide CB1/agonistas
13.
Bioorg Med Chem Lett ; 20(2): 628-31, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19963380

RESUMEN

The naturally occurring aporphine alkaloid nantenine, has been shown to antagonize behavioral and physiological effects of MDMA in mice. We have synthesized (+/-)-nantenine via an oxidative cyclization reaction with PIFA and evaluated its binding profile against a panel of CNS targets. To begin to understand the importance of the chiral center of nantenine with regards to its capacity to antagonize the effects of MDMA in vivo, (R)- and (S)-nantenine were prepared and evaluated in a food-reinforced operant task in rats. Pretreatment with either nantenine enantiomer (0.3mg/kg ip) completely blocked the behavioral suppression induced upon administration of 3.0mg/kg MDMA. (+/-)-Nantenine displayed high affinity and selectivity for the alpha(1A) adrenergic receptor among several other receptors suggesting that this alpha(1) subtype may be significantly involved in the anti-MDMA effects of the enantiomers.


Asunto(s)
Aporfinas/síntesis química , N-Metil-3,4-metilenodioxianfetamina/antagonistas & inhibidores , Antagonistas de Receptores Adrenérgicos alfa 1 , Animales , Aporfinas/química , Aporfinas/farmacología , Depresores del Apetito/farmacología , Ciclización , Fluoroacetatos , Yodobencenos , Ketanserina/farmacología , Ratones , Ratas , Receptores Adrenérgicos alfa 1/metabolismo , Estereoisomerismo , Ácido Trifluoroacético/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA