Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38869487

RESUMEN

A Gram-stain-positive, aerobic bacterium, designated as YPD9-1T, was isolated from the gut contents of a spotty belly greenling, Hexagrammos agrammus, collected near Dokdo island, South Korea. The rod-shaped cells were oxidase-positive, and catalase-negative. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0, iso-C16 : 0 and iso-C17: 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 47.6 mol% and the predominant respiratory quinone was menaquinone MK-7. The 16S rRNA gene sequence of YPD9-1T showed low sequence similarities to species of the genus Paenibacillus, Paenibacillus pocheonensis Gsoil 1138T (97.21 % of sequence similarity), Paenibacillus aestuarii CJ25T (97.12 %) and Paenibacillus allorhizoplanae JJ-42T (96.89 %). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that YPD9-1T formed a distinct branch among other species of the genus Paenibacillus. The digital DNA-DNA hybridisation, average nucleotide identity, and average amino acid identity values between YPD9-1T and the related species were in the ranges of 15.3-16.2 %, 74.1-78.4 %, and 71.1-71.9 %, respectively, which are below the species cutoff values. On the basis of the results of the polyphasic analysis, we conclude that strain YPD9-1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus hexagrammi sp. nov. is proposed. The type strain of Paenibacillus hexagrammi is YPD9-1T (=KCTC 43424T =LMG 32988T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Paenibacillus , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Vitamina K 2 , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , República de Corea , Ácidos Grasos/análisis , Ácidos Grasos/química , Paenibacillus/aislamiento & purificación , Paenibacillus/clasificación , Paenibacillus/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Animales , Hibridación de Ácido Nucleico , Fosfolípidos/análisis , Fosfolípidos/química
2.
Sci Rep ; 12(1): 20553, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446807

RESUMEN

Salmonella infections represent an important public health problem. In 2018, a multistate outbreak of S. enterica subsp. enterica serovar Thompson infection associated with contaminated chocolate cakes in schools was reported in South Korea. In this study, we sequenced the 37 S. Thompson strains isolated from chocolate cakes, egg whites, preserves, and cookware associated with the outbreak. In addition, we analyze the genomic sequences of 61 S. Thompson strains (37 chocolate cake-related outbreak strains, 4 strains isolated from outbreaks in South Korea and 20 strains available in the National Center for Biotechnology Information) to assess the genomic characteristics of outbreak-related strains by comparative genomics and phylogenetic analysis. The results showed that identically classified clusters divided strains into two clusters, sub-clusters A & I (with strains from 2018 in South Korea) and sub-clusters B & II (with strains from 2014 to 2015 in South Korea). S. Thompson isolated from South Korea were accurately distinguished from publicly-available strains. Unlike other S. Thompson genomes, those of chocolate cake outbreak-related strains had three Salmonella phages (SEN8, vB SosS Oslo, and SI7) integrated into their chromosome. Comparative genomics revealed several genes responsible for the specific genomic features of chocolate cake outbreak-related strains and three bacteriophages that may contribute to the pathogenicity of other S. Thompson strains.


Asunto(s)
Brotes de Enfermedades , Genómica , Serogrupo , Filogenia , República de Corea/epidemiología
3.
J Microbiol Biotechnol ; 31(11): 1552-1558, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34489379

RESUMEN

The diverse microbial communities in kimchi are dependent on fermentation period and temperature. Here, we investigated the effect of enterotoxigenic Escherichia coli (ETEC) during the fermentation of kimchi at two temperatures using high-throughput sequencing. There were no differences in pH between the control group, samples not inoculated with ETEC, and the ETEC group, samples inoculated with ETEC MFDS 1009477. The pH of the two groups, which were fermented at 10 and 25°C, decreased rapidly at the beginning of fermentation and then reached pH 3.96 and pH 3.62. In both groups, the genera Lactobacillus, Leuconostoc, and Weissella were predominant. Our result suggests that microbial communities during kimchi fermentation may be affected by the fermentation parameters, such as temperature and period, and not enterotoxigenic E. coli (ETEC).


Asunto(s)
Escherichia coli Enterotoxigénica , Alimentos Fermentados/microbiología , Microbiología de Alimentos , Microbiota , Brassica , Fermentación , Secuenciación de Nucleótidos de Alto Rendimiento , Concentración de Iones de Hidrógeno , Lactobacillus/clasificación , Leuconostoc/clasificación , ARN Ribosómico 16S/genética , Temperatura , Weissella/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA