Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Intervalo de año de publicación
1.
mSphere ; : e0040624, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980068

RESUMEN

Dengue virus (DENV) infection is known to affect host cell metabolism, but the molecular players involved are still poorly known. Using a proteomics approach, we identified six DENV proteins associated with mitochondria isolated from infected hepatocytes, and most of the peptides identified were from NS3. We also found an at least twofold decrease of several electron transport system (ETS) host proteins. Thus, we investigated whether NS3 could modulate the ETS function by incubating recombinant DENV NS3 constructs in mitochondria isolated from mouse liver. We found that NS3pro (NS3 protease domain), but not the correspondent catalytically inactive mutant (NS3proS135A), impairs complex I (CI)-dependent NADH:ubiquinone oxidoreductase activity, but not the activities of complexes II, III, IV, or V. Accordingly, using high-resolution respirometry, we found that both NS3pro and full-length NS3 decrease the respiratory rates associated with malate/pyruvate oxidation in mitochondria. The NS3-induced impairment in mitochondrial respiration occurs without altering either leak respiration or mitochondria's capacity to maintain membrane potential, suggesting that NS3 does not deeply affect mitochondrial integrity. Remarkably, CI activity is also inhibited in DENV-infected cells, supporting that the NS3 effects observed in isolated mitochondria may be relevant in the context of the infection. Finally, in silico analyses revealed the presence of potential NS3 cleavage sites in 17 subunits of mouse CI and 16 subunits of human CI, most of them located on the CI surface, suggesting that CI is prone to undergo proteolysis by NS3. Our findings suggest that DENV NS3 can modulate mitochondrial bioenergetics by directly affecting CI function. IMPORTANCE: Dengue virus (DENV) infection is a major public health problem worldwide, affecting about 400 million people yearly. Despite its importance, many molecular aspects of dengue pathogenesis remain poorly known. For several years, our group has been investigating DENV-induced metabolic alterations in the host cells, focusing on the bioenergetics of mitochondrial respiration. The results of the present study reveal that the DENV non-structural protein 3 (NS3) is found in the mitochondria of infected cells, impairing mitochondrial respiration by directly targeting one of the components of the electron transport system, the respiratory complex I (CI). NS3 acts as the viral protease during the DENV replication cycle, and its proteolytic activity seems necessary for inhibiting CI function. Our findings uncover new nuances of DENV-induced metabolic alterations, highlighting NS3 as an important player in the modulation of mitochondria function during infection.

2.
Int J Biol Macromol ; 255: 128078, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972836

RESUMEN

Disintegrins are a family of cysteine-rich small proteins that were first identified in snake venom. The high divergence of disintegrins gave rise to a plethora of functions, all related to the interaction with integrins. Disintegrins evolved to interact selectively with different integrins, eliciting many physiological outcomes and being promising candidates for the therapy of many pathologies. We used NMR to determine the structure and dynamics of the recombinant disintegrin jarastatin (rJast) and its interaction with the cancer-related integrin αVß3. rJast displayed the canonical fold of a medium-sized disintegrin and showed complex dynamic in multiple timescales. We used NMR experiments to map the interaction of rJast with αVß3, and molecular docking followed by molecular dynamics (MD) simulation to describe the first structural model of a disintegrin/integrin complex. We showed that not only the RGD loop participates in the interaction, but also the N-terminal domain. rJast plasticity was essential for the interaction with αVß3 and correlated with the main modes of motion depicted in the MD trajectories. In summary, our study provides novel structural insights that enhance our comprehension of the mechanisms underlying disintegrin functionality.


Asunto(s)
Desintegrinas , Integrina alfaVbeta3 , Desintegrinas/química , Integrina alfaVbeta3/metabolismo , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Integrinas/metabolismo
3.
An Acad Bras Cienc ; 95(3): e20220973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909566

RESUMEN

This study presents the first complete mitogenome of the Brazilian Atlantic bushmaster Lachesis with insights into snake evolution. The total length was 17,177 bp, consisting of 13 PCGs, 22 tRNAs, two rRNAs and a duplicate control region (CRs). Almost all genes were encoded by the heavy-strand, except for the ND6 gene and eight tRNAs (tRNA-Gln, Ala, Asn, Cys, Tyr, Ser[TGA anticodon], Glu, Pro). Only ATG, ATA, and ATC were starting codons for protein-coding sequences. Stop codons mainly were TAA, AGA, AGG, and TAG; whereas ND1, ND3, and CYTB terminated with incomplete stop codons. Phylogeny retrieved Lachesis within the Crotalinae as the sister group of Agkistrodon; and the Lachesis+Agkistrodon clade as the sister group of (Sistrurus+Crotalus)+Bothrops. The tree supports Crotalinae, Viperinae, and Azemiopinae in the Viperidae family, being sister taxa of Colubridae+(Elapidae+Psammophiidae). The mean genetic distance across 15 snake families and 57 nucleotide sequences was 0.37. The overall mean value of genetic distance across the Crotalinae was 0.23, with Lachesis muta exhibiting the shortest distance of 0.2 with Agkistrodon piscivorus, Protobothrops dabieshanensis and P. flavoviridis and the greatest 0.25 with Gloydius blomhoffii, Trimeresurus albolabris, S. miliarius, and Deinagkistrodon acutus. The complete Atlantic L. muta mitogenome presented herein is only the third annotated mitogenome from more than 430 described Brazilian snake species.


Asunto(s)
Crotalinae , Genoma Mitocondrial , Viperidae , Humanos , Animales , Crotalinae/genética , Viperidae/genética , Genoma Mitocondrial/genética , Codón de Terminación , Brasil
4.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077593

RESUMEN

Overexpression of human epidermal growth factor receptor-2 (HER-2) occurs in 20% of all breast cancer subtypes, especially those that present the worst prognostic outcome through a very invasive and aggressive tumour. HCC-1954 (HER-2+) is a highly invasive, metastatic cell line, whereas MCF-7 is mildly aggressive and non-invasive. We investigated membrane proteins from both cell lines that could have a pivotal biological significance in metastasis. Membrane protein enrichment for HCC-1954 and MCF-7 proteomic analysis was performed. The samples were analysed and quantified by mass spectrometry. High abundance membrane proteins were confirmed by Western blot, immunofluorescence, and flow cytometry. Protein interaction prediction and correlations with the Cancer Genome Atlas (TCGA) patient data were conducted by bioinformatic analysis. In addition, ß1 integrin expression was analysed by Western blot in cells upon trastuzumab treatment. The comparison between HCC-1954 and MCF-7 membrane-enriched proteins revealed that proteins involved in cytoskeleton organisation, such as HER-2, αv and ß1 integrins, E-cadherin, and CD166 were more abundant in HCC-1954. ß1 integrin membrane expression was higher in the HCC-1954 cell line resistant after trastuzumab treatment. TCGA data analysis showed a trend toward a positive correlation between HER-2 and ß1 integrin in HER-2+ breast cancer patients. Differences in protein profile and abundance reflected distinctive capabilities for aggressiveness and invasiveness between HCC-1954 and MCF-7 cell line phenotypes. The higher membrane ß1 integrin expression after trastuzumab treatment in the HCC-1954 cell line emphasised the need for investigating the contribution of ß1 integrin modulation and its effect on the mechanism of trastuzumab resistance.


Asunto(s)
Neoplasias de la Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de la Mama/metabolismo , Cadherinas/genética , Línea Celular Tumoral , Femenino , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Células MCF-7 , Proteómica , Trastuzumab/farmacología , Trastuzumab/uso terapéutico
5.
Front Mol Biosci ; 8: 783301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926583

RESUMEN

Disintegrins are small cysteine-rich proteins found in a variety of snake venom. These proteins selectively modulate integrin function, heterodimeric receptors involved in cell-cell and cell-matrix interaction that are widely studied as therapeutic targets. Snake venom disintegrins emerged from the snake venom metalloproteinase and are classified according to the sequence size and number of disulfide bonds. Evolutive structure and function diversification of disintegrin family involves a stepwise decrease in the polypeptide chain, loss of cysteine residues, and selectivity. Since the structure elucidation of echistatin, the description of the structural properties of disintegrins has allowed the investigation of the mechanisms involved in integrin-cell-extracellular matrix interaction. This review provides an analysis of the structures of all family groups enabling the description of an expanded classification of the disintegrin family in seven groups. Each group presents a particular disulfide pattern and sequence signatures, facilitating the identification of new disintegrins. The classification was based on the disintegrin-like domain of the human metalloproteinase (ADAM-10). We also present the sequence and structural signatures important for disintegrin-integrin interaction, unveiling the relationship between the structure and function of these proteins.

6.
PLoS Negl Trop Dis ; 15(11): e0009951, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780470

RESUMEN

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2',6'-dihydroxy-4'-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2',4',6'- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.


Asunto(s)
Antiprotozoarios/uso terapéutico , Chalcona/metabolismo , Chalcona/farmacología , Citosol/efectos de los fármacos , Leishmania/efectos de los fármacos , Peroxidasas/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/farmacología , Células Cultivadas , Chalcona/administración & dosificación , Chalcona/análogos & derivados , Citosol/enzimología , Citosol/parasitología , Descubrimiento de Drogas , Humanos , Leishmania/clasificación , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Peroxidasas/metabolismo , Proteínas Protozoarias/metabolismo
7.
iScience ; 24(11): 103315, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34723156

RESUMEN

We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.

8.
Front Bioeng Biotechnol ; 8: 1028, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984289

RESUMEN

The high demand for energy and the increase of the greenhouse effect propel the necessity to develop new technologies to efficiently deconstruct the lignocellulosic materials into sugars monomers. Sugarcane bagasse is a rich polysaccharide residue from sugar and alcohol industries. The thermophilic fungus Myceliophthora thermophila (syn. Sporotrichum thermophilum) is an interesting model to study the enzymatic degradation of biomass. The genome of M. thermophila encodes an extensive repertoire of cellulolytic enzymes including 23 lytic polysaccharide monooxygenases (LPMOs) from the Auxiliary Activity family 9 (AA9), which are known to oxidatively cleave the ß-1,4 bonds and boost the cellulose conversion in a biorefinery context. To achieve a deeper understanding of the enzymatic capabilities of M. thermophila on sugarcane bagasse, we pretreated this lignocellulosic residue with different methods leading to solids with various cellulose/hemicellulose/lignin proportions and grew M. thermophila on these substrates. The secreted proteins were analyzed using proteomics taking advantage of two mass spectrometry methodologies. This approach unraveled the secretion of many CAZymes belonging to the Glycosyl Hydrolase (GH) and AA classes including several LPMOs that may contribute to the biomass degradation observed during fungal growth. Two AA9 LPMOs, called MtLPMO9B and MtLPMO9H, were selected from secretomic data and enzymatically characterized. Although MtLPMO9B and MtLPMO9H were both active on cellulose, they differed in terms of optimum temperatures and regioselectivity releasing either C1 or C1-C4 oxidized oligosaccharides, respectively. LPMO activities were also measured on sugarcane bagasse substrates with different levels of complexity. The boosting effect of these LPMOs on bagasse sugarcane saccharification by a Trichoderma reesei commercial cocktail was also observed. The partially delignified bagasse was the best substrate considering the oxidized oligosaccharides released and the acid treated bagasse was the best one in terms of saccharification boost.

9.
Int J Biol Macromol ; 145: 668-681, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31883887

RESUMEN

Marsypianthes chamaedrys (Lamiaceae) is a medicinal plant popularly used against envenomation by snakebite. Pharmacological studies have shown that extracts of M. chamaedrys have antiophidic, anti-inflammatory and anticoagulant properties, supporting the ethnopharmacological use. In this study, an aqueous extract of aerial parts of M. chamaedrys showed anticoagulant activity in the activated partial thromboplastin time assay (0.54 IU/mg). The bioassay-guided fractionation using ethanol precipitation and gel filtration chromatography on Sephadex G-50 and Sephadex G-25 resulted in a water-soluble fraction with increased anticoagulant activity (Fraction F2-A; 2.94 IU/mg). A positive correlation was found between the amount of uronic acids and the anticoagulant potential of the active samples. Chemical and spectroscopic analyses indicated that F2-A contained homogalacturonan, type I rhamnogalacturonan, type II arabinogalactan and α-glucan. UV and FT-IR spectra indicated the possible presence of ferulic acid. Pectic polysaccharides and type II arabinogalactans may be contributing to the anticoagulant activity of the aqueous extract of M. chamaedrys in the APTT assay.


Asunto(s)
Anticoagulantes/farmacología , Lamiaceae/química , Extractos Vegetales/farmacología , Polisacáridos/química , Anticoagulantes/química , Coagulación Sanguínea/efectos de los fármacos , Pruebas de Coagulación Sanguínea , Cromatografía Líquida de Alta Presión , Humanos , Extracción Líquido-Líquido , Espectroscopía de Resonancia Magnética , Fitoquímicos/análisis , Fitoquímicos/química , Extractos Vegetales/química , Plantas Medicinales/química , Espectroscopía Infrarroja por Transformada de Fourier
10.
Pest Manag Sci ; 74(7): 1593-1599, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29297969

RESUMEN

BACKGROUND: Lectins, carbohydrate-binding proteins, from the bark (MuBL) and leaf (MuLL) of Myracrodruon urundeuva are termiticidal agents against Nasutitermes corniger workers and have been shown to induce oxidative stress and cell death in the midgut of these insects. In this study, we investigated the binding targets of MuBL and MuLL in the gut of N. corniger workers by determining the effects of these lectins on the activity of digestive enzymes. In addition, we used mass spectrometry to identify peptides from gut proteins that adsorbed to MuBL-Sepharose and MuLL-Sepharose columns. RESULTS: Exoglucanase activity was neutralized in the presence of MuBL and stimulated by MuLL. α-l-Arabinofuranosidase activity was not affected by MuBL but was inhibited by MuLL. Both lectins stimulated α-amylase activity and inhibited protease and trypsin-like activities. Peptides with homology to apolipophorin, trypsin-like enzyme, and ABC transporter substrate-binding protein were detected from proteins that adsorbed to MuBL-Sepharose, while peptides from proteins that bound to MuLL-Sepharose shared homology with apolipophorin. CONCLUSION: This study revealed that digestive enzymes and transport proteins found in worker guts can be recognized by MuBL and MuLL. Thus, the mechanism of their termiticidal activity may involve changes in the digestion and absorption of nutrients. © 2018 Society of Chemical Industry.


Asunto(s)
Anacardiaceae/química , Insecticidas/metabolismo , Isópteros/efectos de los fármacos , Lectinas de Plantas/metabolismo , Animales , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/enzimología , Isópteros/enzimología , Corteza de la Planta/química , Hojas de la Planta/química , Lectinas de Plantas/administración & dosificación
11.
Nat Prod Res ; 32(24): 2940-2944, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29047320

RESUMEN

In this study, Moringa oleifera flower extract and a trypsin inhibitor (MoFTI) isolated from it were evaluated for anti-protozoal activity against Trypanosoma cruzi and cytotoxicity to mammalian cells. The presence of flavonoids was remarkable in the HPLC fingerprints of the extract at 254 and 360 nm. Amino acid sequences of peptides derived from in-gel digestion of MoFTI were determined. Both the extract and MoFTI caused lysis of T. cruzi trypomastigotes with LC50/24 h of 54.18 ± 6.62 and 41.20 ± 4.28 µg/mL, respectively. High selectivity indices (7.9 to >12) for T. cruzi cells over murine peritoneal macrophages and Vero cells were found for the extract and MoFTI. The results show that MoFTI is a trypanocidal principle of the flower extract.


Asunto(s)
Flavonoides , Flores/química , Moringa oleifera/química , Extractos Vegetales/química , Tripanocidas , Trypanosoma cruzi/efectos de los fármacos , Inhibidores de Tripsina/aislamiento & purificación , Animales , Línea Celular , Chlorocebus aethiops , Flavonoides/análisis , Macrófagos Peritoneales/efectos de los fármacos , Mamíferos , Ratones , Extractos Vegetales/farmacología , Tripanocidas/farmacología , Inhibidores de Tripsina/farmacología , Células Vero/efectos de los fármacos
12.
Thromb Res ; 159: 24-32, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28950217

RESUMEN

INTRODUCTION: Cancer-associated thrombosis is one of the major causes of worse prognosis among tumor-bearing patients. Extracellular vesicles derived from cancer cells, which can be divided mainly into microvesicles and exosomes, can participate in several tumor progression phenomena. Tumor-derived microvesicles positive for tissue factor (TF) have been associated with thrombotic risk in certain cancer types. Cancer cell-derived exosomes, however, have not. In this study we evaluated the capacity of extracellular vesicles (EVs, containing both microvesicles and exosomes) derived from breast-cancer cell lines in promoting platelet activation, aggregation and plasma coagulation, in experiments that access both TF-dependent and -independent activities. MATERIALS AND METHODS: EVs were isolated from the conditioned media of two human mammary carcinoma cell lines: MDA-MB-231 (highly invasive) and MCF-7 (less invasive). TF-independent EV/platelet interaction, platelet P-selectin exposure and aggregation were evaluated. Western blotting, plasma clotting and platelet aggregation in the presence of plasma were performed for the measurement of TF-dependent activity in EVs. RESULTS: Interaction between MDA-MB-231 EVs and washed platelets led to increased platelet P-selectin exposure and platelet aggregation compared to MCF-7 EVs. MDA-MB-231 EVs had higher TF protein levels and TF-dependent procoagulant activity than MCF-7 EVs. Consequently, TF-dependent platelet aggregation was also induced by MDA-MB-231 EVs, but not by MCF-7 EVs. CONCLUSION: Our results suggest that MDA-MB-231 EVs induce TF-independent platelet activation and aggregation, as well as TF-dependent plasma clotting and platelet aggregation by means of thrombin generation. In this context, aggressive breast cancer-derived EVs may contribute to cancer-associated thrombosis.


Asunto(s)
Neoplasias de la Mama/genética , Vesículas Extracelulares/metabolismo , Tromboplastina/metabolismo , Trombosis/etiología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Vesículas Extracelulares/patología , Femenino , Humanos , Activación Plaquetaria , Agregación Plaquetaria , Trombosis/patología
13.
J Pharm Pharmacol ; 69(10): 1374-1380, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28722151

RESUMEN

OBJECTIVES: In this work, we further investigated the effect of the compound LASSBio-752 in thrombosis models in rats. METHODS: Arterial and venous thrombosis model, ex-vivo recalcification time and aPTT and PT. KEY FINDINGS: In the venous thrombosis model, oral administration of LASSBio-752 [48.2 mg (100 µmol)/kg] one hour before the thrombus induction decreased thrombus weight by 37 ± 0.2%. Interestingly, the antithrombotic action of this compound [48.2 mg (100 µmol)/kg] occurred at 87.5 ± 2.1% of inhibition after 24 h of administration and showed a lasting activity. When tested on the arterial thrombosis model, after a 1-h interval, there was already an increase in time to total occlusion of 34 ± 2.4 min, but the greatest effect was observed at intervals between 6 and 15 h of administration, when no occlusion of the artery was observed. The antithrombotic effect was reduced after 24 h when the occlusion time was 23.8 ± 2.3 min, close to that of the control, 17.6 ± 2.0 min. We also observed that bleeding was not excessive in any of the intervals tested. CONCLUSIONS: Our results indicate that compound LASSBio-752 is a potential candidate for utilization in the treatment of thromboembolic diseases.


Asunto(s)
Enfermedades de las Arterias Carótidas/tratamiento farmacológico , Fibrinolíticos/administración & dosificación , Hemostáticos/administración & dosificación , Trombosis de la Vena/tratamiento farmacológico , Administración Oral , Animales , Enfermedades de las Arterias Carótidas/metabolismo , Femenino , Fibrinolíticos/metabolismo , Hemostáticos/metabolismo , Masculino , Ratas , Ratas Wistar , Tromboembolia/tratamiento farmacológico , Tromboembolia/metabolismo , Trombosis/tratamiento farmacológico , Trombosis/metabolismo , Resultado del Tratamiento , Trombosis de la Vena/metabolismo
14.
J Proteomics ; 151: 43-52, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27478070

RESUMEN

BACKGROUND: Oral leukoplakia is the most common potentially malignant disorder in the oral cavity and can precede carcinoma. This study aimed to identify possible oral leukoplakia salivary biomarkers. METHODS: Unstimulated saliva was collected from participants and protein concentration was determined. Proteins were then precipitated with cold acetone and separated using 2DE over a pH range of 3-10. Spot demarcation and matching were performed and protein identification was done through MS analysis. Oral leukoplakia tissues were submitted to immunohistochemistry analysis for keratin 10 (CK10). A complementary analysis of oral leukoplakias that were not included previously was performed in addition. RESULTS: 226±10 spots were identified in oral leukoplakia 2DE gels, and 262±12 spots were identified in volunteers. Twenty-two spots were highly abundant in oral leukoplakias or not detected in the control group, such as apolipoprotein A1, alpha amylase, cystatins, keratin 10, and lysozyme precursor. All were identified. All oral leukoplakia cases were immunopositive for CK10, mainly in the superficial epithelial layers. CONCLUSIONS: The 2DE salivary protein profiles of individuals with and without oral leukoplakia were observably different. CK10 appears to be an interesting protein and should be further studied in oral carcinogenesis. SIGNIFICANCE: MS-based proteomics enables large-scale analysis of proteins. Proteomics can provide detailed descriptions of proteomes of cells and tissues, including body fluids, and appears as a powerful tool to study human disorders. Saliva is readily accessible through non invasive collection and can mirror diverse disease states. Saliva from both diseased and healthy subjects can be analyzed through 2DE and differences between groups could be found. Routine immunohistochemistry analysis confirmed one of these findings, with CK10 being positive tissues from individuals with oral leukoplakia. Therefore, the present study allows insights into development of an important potential oral cancer precursor, named oral leukoplakia. However, the results can be extrapolated and tested in other precancer states, such as proliferative verrucous leukoplakia, patients at risk of oral cancer due to lifestyle behavior and/or cancer history in the family or even those who are under surveillance after a treated primary oral cancer.


Asunto(s)
Leucoplasia Bucal/química , Proteómica/métodos , Saliva/química , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Estudios de Casos y Controles , Electroforesis en Gel Bidimensional , Humanos , Queratina-10/análisis , Queratina-10/aislamiento & purificación , Persona de Mediana Edad , Lesiones Precancerosas/diagnóstico , Proteoma/análisis
15.
J Proteomics ; 151: 106-113, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27427332

RESUMEN

Secretome analysis can be described as a subset of proteomics studies consisting in the analysis of the molecules secreted by cells or tissues. Dengue virus (DENV) infection can lead to a broad spectrum of clinical manifestations, with the severe forms of the disease characterized by hemostasis abnormalities and liver injury. The hepatocytes are a relevant site of viral replication and a major source of plasma proteins. Until now, we had limited information on the small molecules secreted by hepatic cells after infection by DENV. In the present study, we analysed a fraction of the secretome of mock- and DENV-infected hepatic cells (HepG2 cells) containing molecules with <10kDa, using different proteomic approaches. We identified 175 proteins, with 57 detected only in the samples from mock-infected cells, 59 only in samples from DENV-infected cells, and 59 in both conditions. Most of the peptides identified were derived from proteins larger than 10kDa, suggesting a proteolytic processing of the secreted molecules. Using in silico analysis, we predicted consistent differences between the proteolytic processing occurring in mock and DENV-infected samples, raising, for the first time, the hypothesis that differential proteolysis of secreted molecules would be involved in the pathogenesis of dengue. BIOLOGICAL SIGNIFICANCE: Since the liver, one of the targets of DENV infection, is responsible for producing molecules involved in distinct biological processes, the identification of proteins and peptides secreted by hepatocytes after infection would help to a better understanding of the physiopathology of dengue. Proteomic analyses of molecules with <10kDa secreted by HepG2 cells after infection with DENV revealed differential proteolytic processing as an effect of DENV infection.


Asunto(s)
Virus del Dengue , Hígado/metabolismo , Proteolisis , Proteómica/métodos , Dengue/metabolismo , Células Hep G2 , Hepatocitos/química , Hepatocitos/virología , Humanos , Hígado/virología
16.
Mol Ecol ; 25(18): 4632-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27492757

RESUMEN

Infectious diseases such as white plague syndrome (WPS) and black band disease (BBD) have caused massive coral loss worldwide. We performed a metaproteomic study on the Abrolhos coral Mussismilia braziliensis to define the types of proteins expressed in healthy corals compared to WPS- and BBD-affected corals. A total of 6363 MS/MS spectra were identified as 361 different proteins. Healthy corals had a set of proteins that may be considered markers of holobiont homoeostasis, including tubulin, histone, Rab family, ribosomal, peridinin-chlorophyll a-binding protein, F0F1-type ATP synthase, alpha-iG protein, calmodulin and ADP-ribosylation factor. Cnidaria proteins found in healthy M. braziliensis were associated with Cnidaria-Symbiodinium endosymbiosis and included chaperones (hsp70, hsp90 and calreticulin), structural and membrane modelling proteins (actin) and proteins with functions related to intracellular vesicular traffic (Rab7 and ADP-ribosylation factor 1) and signal transduction (14-3-3 protein and calmodulin). WPS resulted in a clear shift in the predominance of proteins, from those related to aerobic nitrogen-fixing bacteria (i.e. Rhizobiales, Sphingomonadales and Actinomycetales) in healthy corals to those produced by facultative/anaerobic sulphate-reducing bacteria (i.e. Enterobacteriales, Alteromonadales, Clostridiales and Bacteroidetes) in WPS corals. BBD corals developed a diverse community dominated by cyanobacteria and sulphur cycle bacteria. Hsp60, hsp90 and adenosylhomocysteinase proteins were produced mainly by cyanobacteria in BBD corals, which is consistent with elevated oxidative stress in hydrogen sulphide- and cyanotoxin-rich environments. This study demonstrates the usefulness of metaproteomics for gaining better comprehension of coral metabolic status in health and disease, especially in reef systems such as the Abrolhos that are suffering from the increase in global and local threatening events.


Asunto(s)
Antozoos/genética , Antozoos/microbiología , Bacterias/clasificación , Animales , Brasil , Proteómica , Simbiosis , Espectrometría de Masas en Tándem
17.
Toxicon ; 119: 46-51, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27179421

RESUMEN

Bothrojaracin is a 27 kDa C-type lectin-like protein from Bothrops jararaca snake venom. It behaves as a potent thrombin inhibitor upon high-affinity binding to thrombin exosites. Bothrojaracin also forms a stable complex with prothrombin that can be detected in human plasma. Formation of the zymogen-inhibitor complex severely decreases prothrombin activation and contributes to the anticoagulant activity of bothrojaracin. In the present study, we employed two rodent models to evaluate the antithrombotic effect of bothrojaracin in vivo: stasis-induced thrombosis and thrombin-induced pulmonary thromboembolism. It was observed that bothrojaracin interacts with rat prothrombin in plasma. Ex-vivo assays showed stable complex formation even after 24 h of a single bothrojaracin dose. As a result, bothrojaracin showed significant antithrombotic activity in a rat venous thrombosis model elicited by thromboplastin combined with stasis. The antithrombotic activity of bothrojaracin (1 mg/kg) persisted for up to 24 h and it was associated with moderate bleeding as assessed by a tail transection method. Formation of bothrojaracin-prothrombin complex has been also observed following intravenous administration of the inhibitor into mice. As a result, bothrojaracin effectively protected mice from thrombin-induced fatal thromboembolism. We conclude that bothrojaracin is a potent antithrombotic agent in vivo and may serve as a prototype for the development of new zymogen-directed drugs that could result in prolonged half-life and possible decreased hemorrhagic risk.


Asunto(s)
Antitrombinas/toxicidad , Venenos de Crotálidos/toxicidad , Protrombina/antagonistas & inhibidores , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Wistar
18.
Anaerobe ; 39: 84-90, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26948242

RESUMEN

Bacteroides fragilis is the most commonly isolated anaerobic bacteria from infectious processes. Several virulence traits contribute to the pathogenic nature of this bacterium, including the ability to tolerate the high concentrations of bile found in the gastrointestinal tract (GIT). The activity of bile salts is similar to detergents and may lead to membrane permeabilization and cell death. Modulation of outer membrane proteins (OMPs) is considered a crucial event to bile salts resistance. The primary objective of the current work was to identify B. fragilis proteins associated with the stress induced by high concentration of bile salts. The outer membrane of B. fragilis strain 638R was isolated after growth either in the presence of 2% conjugated bile salts or without bile salts. The membrane fractions were separated on SDS-PAGE and analyzed by ESI-Q/TOF tandem mass spectrometry. A total of 37 proteins were identified; among them nine were found to be expressed exclusively in the absence of bile salts whereas eight proteins were expressed only in the presence of bile salts. These proteins are related to cellular functions such as transport through membrane, nutrient uptake, and protein-protein interactions. This study demonstrates the alteration of OMPs composition in B. fragilis during bile salts stress resistance and adaptation to environmental changes. Proteomics of OMPs was also shown to be a useful approach in the identification of new targets for functional analyses.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Bacteroides fragilis/efectos de los fármacos , Ácidos y Sales Biliares/farmacología , Proteínas Portadoras/aislamiento & purificación , Membrana Celular/efectos de los fármacos , Estrés Fisiológico/genética , Adaptación Fisiológica , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteroides fragilis/química , Bacteroides fragilis/crecimiento & desarrollo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/química , Medios de Cultivo/química , Expresión Génica , Ontología de Genes , Anotación de Secuencia Molecular , Proteómica/métodos
19.
Proteomics ; 16(2): 328-44, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26552723

RESUMEN

The mechanisms of cell-cell communications are now under intense study by proteomic approaches. Proteomics has unraveled changes in protein profiling as the result of cell interactions mediated by ligand/receptor, hormones, soluble factors, and the content of extracellular vesicles. Besides being a brief overview of the main and profitable methodologies now available (evaluating theory behind the methods, their usefulness, and pitfalls), this review focuses on-from a proteome perspective-some signaling pathways and post-translational modifications (PTMs), which are essential for understanding ischemic lesions and their recovery in two vital organs in mammals, the heart, and the kidney. Knowledge of misdirection of the proteome during tissue recovery, such as represented by the convergence between fibrosis and cancer, emerges as an important tool in prognosis. Proteomics of cell-cell interaction is also especially useful for understanding how stem cells interact in injured tissues, anticipating clues for rational therapeutic interventions. In the effervescent field of induced pluripotency and cell reprogramming, proteomic studies have shown what proteins from specialized cells contribute to the recovery of infarcted tissues. Overall, we conclude that proteomics is at the forefront in helping us to understand the mechanisms that underpin prevalent pathological processes.


Asunto(s)
Comunicación Celular , Proteómica , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiología , Humanos , Isquemia/metabolismo , Espectrometría de Masas , Infarto del Miocardio/metabolismo , Proteoma/aislamiento & purificación , Proteoma/metabolismo , Proteoma/fisiología , Regeneración , Transducción de Señal
20.
J Proteomics ; 135: 73-89, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25968638

RESUMEN

Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~3.8Mya and currently display a southeastern (SE) and a southern (S) Atlantic rainforest (Mata Atlântica) distribution. The spectrum, geographic variability, and ontogenetic changes of the venom proteomes of snakes from these two B. jararaca phylogroups were investigated applying a combined venom gland transcriptomic and venomic analysis. Comparisons of the venom proteomes and transcriptomes of B. jararaca from the SE and S geographic regions revealed notable interpopulational variability that may be due to the different levels of population-specific transcriptional regulation, including, in the case of the southern population, a marked ontogenetic venom compositional change involving the upregulation of the myotoxic PLA2 homolog, bothropstoxin-I. This population-specific marker can be used to estimate the proportion of venom from the southern population present in the B. jararaca venom pool used for the Brazilian soro antibotrópico (SAB) antivenom production. On the other hand, the southeastern population-specific D49-PLA2 molecules, BinTX-I and BinTX-II, lend support to the notion that the mainland ancestor of Bothrops insularis was originated within the same population that gave rise to the current SE B. jararaca phylogroup, and that this insular species endemic to Queimada Grande Island (Brazil) expresses a pedomorphic venom phenotype. Mirroring their compositional divergence, the two geographic B. jararaca venom pools showed distinct bioactivity profiles. However, the SAB antivenom manufactured in Vital Brazil Institute neutralized the lethal effect of both venoms to a similar extent. In addition, immobilized SAB antivenom immunocaptured most of the venom components of the venoms of both B. jararaca populations, but did not show immunoreactivity against vasoactive peptides. The Costa Rican bothropic-crotalic-lachesic (BCL) antivenom showed the same lack of reactivity against vasoactive peptides but, in addition, was less efficient immunocapturing PI- and PIII-SVMPs from the SE venom, and bothropstoxin-I, a CRISP molecule, and a D49-PLA2 from the venom of the southern B. jararaca phylogroup. The remarkable paraspecificity exhibited by the Brazilian and the Costa Rican antivenoms indicates large immunoreactive epitope conservation across the natural history of Bothrops, a genus that has its roots in the middle Miocene. This article is part of a Special Issue entitled: Omics Evolutionary Ecolog.


Asunto(s)
Bothrops/metabolismo , Venenos de Crotálidos/biosíntesis , Glándulas Exocrinas/metabolismo , Perfilación de la Expresión Génica , Bosque Lluvioso , Transcriptoma/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...