Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Trop Med Hyg ; 103(2): 876-883, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32524954

RESUMEN

Vertical transmission, or pathogen transfer from female to offspring, can facilitate the persistence of emerging arboviruses, such as Zika virus (ZIKV), through periods of low horizontal transmission or adverse environmental conditions. We aimed at determining the rate of vertical transmission for ZIKV in its principal vector, Aedes aegypti, and the vector competence of vertically infected progeny. Aedes aegypti females that consumed a blood meal provisioned with ZIKV were maintained under three temperature conditions (27°C, 30°C, and 33°C) following the infectious blood meal and allowed to complete three reproductive cycles. The overall vertical transmission rate was 6.5% (95% CI = 3.9-9.9). Vertical transmission of ZIKV was observed across all temperature conditions and virus detected in adult progeny up to 2 weeks postemergence. In total, 3.4% (95% CI = 1.6-6.2) of adult progeny produced saliva with ZIKV, indicating their vector competence. These results suggest the virus may be maintained in Ae. aegypti populations without a vertebrate host for short periods.


Asunto(s)
Aedes/virología , Transmisión Vertical de Enfermedad Infecciosa , Mosquitos Vectores/virología , Saliva/virología , Virus Zika/patogenicidad , Aedes/genética , Animales , Femenino , Proteínas del Envoltorio Viral/genética , Carga Viral , Virulencia , Virus Zika/genética , Infección por el Virus Zika/transmisión
2.
PLoS Genet ; 14(10): e1007651, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30286074

RESUMEN

Beetle horns are attractive models for studying the evolution of novel traits, as they display diverse shapes, sizes, and numbers among closely related species within the family Scarabaeidae. Horns radiated prolifically and independently in two distant subfamilies of scarabs, the dung beetles (Scarabaeinae), and the rhinoceros beetles (Dynastinae). However, current knowledge of the mechanisms underlying horn diversification remains limited to a single genus of dung beetles, Onthophagus. Here we unveil 11 horn formation genes in a rhinoceros beetle, Trypoxylus dichotomus. These 11 genes are mostly categorized as larval head- and appendage-patterning genes that also are involved in Onthophagus horn formation, suggesting the same suite of genes was recruited in each lineage during horn evolution. Although our RNAi analyses reveal interesting differences in the functions of a few of these genes, the overwhelming conclusion is that both head and thoracic horns develop similarly in Trypoxylus and Onthophagus, originating in the same developmental regions and deploying similar portions of appendage patterning networks during their growth. Our findings highlight deep parallels in the development of rhinoceros and dung beetle horns, suggesting either that both horn types arose in the common ancestor of all scarabs, a surprising reconstruction of horn evolution that would mean the majority of scarab species (~35,000) actively repress horn growth, or that parallel origins of these extravagant structures resulted from repeated co-option of the same underlying developmental processes.


Asunto(s)
Escarabajos/genética , Larva/genética , Animales , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/genética , Cuernos/anatomía & histología , Cuernos/embriología , Fenotipo , Interferencia de ARN , Especificidad de la Especie
3.
Mol Ecol ; 27(24): 5049-5072, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30357984

RESUMEN

Among the most dramatic examples of sexual selection are the weapons used in battles between rival males over access to females. As with ornaments of female choice, the most "exaggerated" sexually selected weapons vary from male to male more widely than other body parts (hypervariability), and their growth tends to be more sensitive to nutritional state or physiological condition compared with growth of other body parts ("heightened" conditional expression). Here, we use RNAseq analysis to build on recent work exploring these mechanisms in the exaggerated weapons of beetles, by examining patterns of differential gene expression in exaggerated (head and thorax horns) and non-exaggerated (wings, genitalia) traits in the Asian rhinoceros beetle, Trypoxylus dichotomus. Our results suggest that sexually dimorphic expression of weaponry involves large-scale changes in gene expression, relative to other traits, while nutrition-driven changes in gene expression in these same weapons are less pronounced. However, although fewer genes overall were differentially expressed in high- vs. low-nutrition individuals, the number of differentially expressed genes varied predictably according to a trait's degree of condition dependence (head horn > thorax horn > wings > genitalia). Finally, we observed a high degree of similarity in direction of effects (vectors) for subsets of differentially expressed genes across both sexually dimorphic and nutritionally responsive growth. Our results are consistent with a common set of mechanisms governing sexual size dimorphism and condition dependence.


Asunto(s)
Estructuras Animales/anatomía & histología , Escarabajos/anatomía & histología , Caracteres Sexuales , Conducta Sexual Animal , Animales , Escarabajos/genética , Femenino , Masculino , Análisis de Secuencia de ARN , Transcriptoma
4.
Curr Opin Insect Sci ; 25: 35-41, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29602360

RESUMEN

Many traits that are sexually dimorphic, appearing either differently or uniquely in one sex, are also sensitive to an organism's condition. This phenomenon seems to have evolved to limit genetic conflict between traits that are under different selective pressures in each sex. Recent work has shed light on the molecular and developmental mechanisms that govern this condition sensitive growth, and this work has now expanded to encompass both sexual dimorphism as well as conditionally plastic growth, as it seems the two phenomena are linked on a molecular level. In all cases studied the gene doublesex, a conserved regulator of sex differentiation, controls both sexual dimorphism as well as the condition-dependent plastic responses common to these traits. However, the advent of next-generation -omics technologies has allowed researchers to decipher the common and diverged mechanisms of sexually dimorphic plasticity and expand investigations beyond the foundation laid by studies utilizing beetle weapons.


Asunto(s)
Escarabajos/crecimiento & desarrollo , Escarabajos/genética , Caracteres Sexuales , Adaptación Fisiológica , Animales , Femenino , Masculino
5.
J Insect Physiol ; 105: 85-94, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29366850

RESUMEN

Males of the Asian rhinoceros beetle, Trypoxylus dichotomus, possess exaggerated head and thoracic horns that scale dramatically out of proportion to body size. While studies of insulin signaling suggest that this pathway regulates nutrition-dependent growth including exaggerated horns, what regulates disproportionate growth has yet to be identified. The Fat signaling pathway is a potential candidate for regulating disproportionate growth of sexually-selected traits, a hypothesis we advanced in a previous paper (Gotoh et al., 2015). To investigate the role of Fat signaling in the growth and scaling of the sexually dimorphic, condition-dependent traits of the in the Asian rhinoceros beetle T. dichotomus, we used RNA interference to knock down expression of fat and its co-receptor dachsous. Knockdown of fat, and to a lesser degree dachsous, caused shortening and widening of appendages, including the head and thoracic horns. However, scaling of horns to body size was not affected. Our results show that Fat signaling regulates horn growth in T. dichotomus as it does in appendage growth in other insects. However, we provide evidence that Fat signaling does not mediate the disproportionate, positive allometric growth of horns in T. dichotomus.


Asunto(s)
Cadherinas/metabolismo , Escarabajos/crecimiento & desarrollo , Escarabajos/metabolismo , Caracteres Sexuales , Animales , Cadherinas/genética , Escarabajos/genética , Escarabajos/ultraestructura , Técnicas de Silenciamiento del Gen , Masculino , Transducción de Señal
6.
Dev Biol ; 422(1): 24-32, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27989519

RESUMEN

One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta). In order to understand the proximate mechanisms of mouthpart modification, we investigated the function of appendage-patterning genes in mandibular enlargement during extreme growth of the sexually dimorphic mandibles of the stag beetle Cyclommatus metallifer. Based on knowledge from Drosophila and Tribolium studies, we focused on seven appendage patterning genes (Distal-less (Dll), aristaless (al), dachshund (dac), homothorax (hth), Epidermal growth factor receptor (Egfr), escargot (esg), and Keren (Krn). In order to characterize the developmental function of these genes, we performed functional analyses by using RNA interference (RNAi). Importantly, we found that RNAi knockdown of dac resulted in a significant mandible size reduction in males but not in female mandibles. In addition to reducing the size of mandibles, dac knockdown also resulted in a loss of the serrate teeth structures on the mandibles of males and females. We found that al and hth play a significant role during morphogenesis of the large male-specific inner mandibular tooth. On the other hand, knockdown of the distal selector gene Dll did not affect mandible development, supporting the hypothesis that mandibles likely do not contain the distal-most region of the ancestral appendage and therefore co-option of Dll expression is unlikely to be involved in mandible enlargement in stag beetles. In addition to mandible development, we explored possible roles of these genes in controlling the divergent antennal morphology of Coleoptera.


Asunto(s)
Tipificación del Cuerpo/genética , Escarabajos/embriología , Mandíbula/embriología , Caracteres Sexuales , Animales , Evolución Biológica , Receptores ErbB/fisiología , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Masculino , Procesos de Determinación del Sexo
7.
BMC Genomics ; 17: 250, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001106

RESUMEN

BACKGROUND: Genes in the sex determination pathway are important regulators of sexually dimorphic animal traits, including the elaborate and exaggerated male ornaments and weapons of sexual selection. In this study, we identified and functionally analyzed members of the sex determination gene family in the golden metallic stag beetle Cyclommatus metallifer, which exhibits extreme differences in mandible size between males and females. RESULTS: We constructed a C. metallifer transcriptomic database from larval and prepupal developmental stages and tissues of both males and females. Using Roche 454 pyrosequencing, we generated a de novo assembled database from a total of 1,223,516 raw reads, which resulted in 14,565 isotigs (putative transcript isoforms) contained in 10,794 isogroups (putative identified genes). We queried this database for C. metallifer conserved sex determination genes and identified 14 candidate sex determination pathway genes. We then characterized the roles of several of these genes in development of extreme sexual dimorphic traits in this species. We performed molecular expression analyses with RT-PCR and functional analyses using RNAi on three C. metallifer candidate genes--Sex-lethal (CmSxl), transformer-2 (Cmtra2), and intersex (Cmix). No differences in expression pattern were found between the sexes for any of these three genes. In the RNAi gene-knockdown experiments, we found that only the Cmix had any effect on sexually dimorphic morphology, and these mimicked the effects of Cmdsx knockdown in females. Knockdown of CmSxl had no measurable effects on stag beetle phenotype, while knockdown of Cmtra2 resulted in complete lethality at the prepupal period. These results indicate that the roles of CmSxl and Cmtra2 in the sex determination cascade are likely to have diverged in stag beetles when compared to Drosophila. Our results also suggest that Cmix has a conserved role in this pathway. In addition to those three genes, we also performed a more complete functional analysis of the C. metallifer dsx gene (Cmdsx) to identify the isoforms that regulate dimorphism more fully using exon-specific RNAi. We identified a total of 16 alternative splice variants of the Cmdsx gene that code for up to 14 separate exons. Despite the variation in RNA splice products of the Cmdsx gene, only four protein isoforms are predicted. The results of our exon-specific RNAi indicated that the essential CmDsx isoform for postembryonic male differentiation is CmDsxB, whereas postembryonic female specific differentiation is mainly regulated by CmDsxD. CONCLUSIONS: Taken together, our results highlight the importance of studying the function of highly conserved sex determination pathways in numerous insect species, especially those with dramatic and exaggerated sexual dimorphism, because conservation in protein structure does not always translate into conservation in downstream function.


Asunto(s)
Escarabajos/genética , Genes de Insecto , Familia de Multigenes , Diferenciación Sexual/genética , Empalme Alternativo , Animales , Escarabajos/fisiología , Exones , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Isoformas de Proteínas/genética , Interferencia de ARN , Análisis de Secuencia de ARN , Procesos de Determinación del Sexo
8.
PLoS One ; 9(2): e88364, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586317

RESUMEN

Scarab beetles exhibit an astonishing variety of rigid exo-skeletal outgrowths, known as "horns". These traits are often sexually dimorphic and vary dramatically across species in size, shape, location, and allometry with body size. In many species, the horn exhibits disproportionate growth resulting in an exaggerated allometric relationship with body size, as compared to other traits, such as wings, that grow proportionately with body size. Depending on the species, the smallest males either do not produce a horn at all, or they produce a disproportionately small horn for their body size. While the diversity of horn shapes and their behavioural ecology have been reasonably well studied, we know far less about the proximate mechanisms that regulate horn growth. Thus, using 454 pyrosequencing, we generated transcriptome profiles, during horn growth and development, in two different scarab beetle species: the Asian rhinoceros beetle, Trypoxylus dichotomus, and the dung beetle, Onthophagus nigriventris. We obtained over half a million reads for each species that were assembled into over 6,000 and 16,000 contigs respectively. We combined these data with previously published studies to look for signatures of molecular evolution. We found a small subset of genes with horn-biased expression showing evidence for recent positive selection, as is expected with sexual selection on horn size. We also found evidence of relaxed selection present in genes that demonstrated biased expression between horned and horn-less morphs, consistent with the theory of developmental decoupling of phenotypically plastic traits.


Asunto(s)
Exoesqueleto/crecimiento & desarrollo , Escarabajos/crecimiento & desarrollo , Fenotipo , Selección Genética , Caracteres Sexuales , Transcriptoma , Animales , Secuencia de Bases , Tamaño Corporal , Mapeo Contig , ADN Complementario/genética , Femenino , Masculino , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
J Pharmacol Exp Ther ; 336(3): 633-42, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21139061

RESUMEN

p38 mitogen-activated protein kinases (MAPKs) are critical for innate immune signaling and subsequent cytokine expression in periodontal inflammation and bone destruction. In fact, previous studies show that systemic p38 MAPK inhibitors block periodontal disease progression. However, development of p38 MAPK inhibitors with favorable toxicological profiles is difficult. Here, we report our findings regarding the contribution of the downstream p38 MAPK substrate, mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAPK-2), in immune response modulation in an experimental model of pathogen-derived lipopolysaccharide (LPS)-induced periodontal bone loss. To determine whether small interfering RNA (siRNA) technology has intraoral applications, we initially validated MK2 siRNA specificity. Then, gingival tissue surrounding maxillary molars of rats was injected with MK2 siRNA or scrambled siRNA at the palatal regions of bone loss. Intraoral tissues treated with MK2 siRNA had significantly less MK2 mRNA expression compared with scrambled siRNA-treated tissues. MK2 siRNA delivery arrested LPS-induced inflammatory bone loss, decreased inflammatory infiltrate, and decreased osteoclastogenesis. This proof-of-concept study suggests a novel target using an intraoral RNA interference strategy to control periodontal inflammation.


Asunto(s)
Pérdida de Hueso Alveolar/enzimología , Pérdida de Hueso Alveolar/prevención & control , Silenciador del Gen/fisiología , Mediadores de Inflamación/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Pérdida de Hueso Alveolar/patología , Animales , Línea Celular , Células Cultivadas , Técnicas de Silenciamiento del Gen/métodos , Inflamación/enzimología , Inflamación/genética , Inflamación/prevención & control , Macrófagos/enzimología , Macrófagos/patología , Proteínas Serina-Treonina Quinasas/biosíntesis , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA