Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(7): 3327-3349, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391026

RESUMEN

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.


Asunto(s)
Optogenética , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Transducción de Señal
3.
Cell Mol Life Sci ; 80(9): 269, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37634152

RESUMEN

The development of aging is associated with the disruption of key cellular processes manifested as well-established hallmarks of aging. Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) have no stable tertiary structure that provide them a power to be configurable hubs in signaling cascades and regulate many processes, potentially including those related to aging. There is a need to clarify the roles of IDPs/IDRs in aging. The dataset of 1702 aging-related proteins was collected from established aging databases and experimental studies. There is a noticeable presence of IDPs/IDRs, accounting for about 36% of the aging-related dataset, which is however less than the disorder content of the whole human proteome (about 40%). A Gene Ontology analysis of the used here aging proteome reveals an abundance of IDPs/IDRs in one-third of aging-associated processes, especially in genome regulation. Signaling pathways associated with aging also contain IDPs/IDRs on different hierarchical levels, revealing the importance of "structure-function continuum" in aging. Protein-protein interaction network analysis showed that IDPs present in different clusters associated with different aging hallmarks. Protein cluster with IDPs enrichment has simultaneously high liquid-liquid phase separation (LLPS) probability, "nuclear" localization and DNA-associated functions, related to aging hallmarks: genomic instability, telomere attrition, epigenetic alterations, and stem cells exhaustion. Intrinsic disorder, LLPS, and aggregation propensity should be considered as features that could be markers of pathogenic proteins. Overall, our analyses indicate that IDPs/IDRs play significant roles in aging-associated processes, particularly in the regulation of DNA functioning. IDP aggregation, which can lead to loss of function and toxicity, could be critically harmful to the cell. A structure-based analysis of aging and the identification of proteins that are particularly susceptible to disturbances can enhance our understanding of the molecular mechanisms of aging and open up new avenues for slowing it down.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteoma , Envejecimiento/genética , Epigenómica , Ontología de Genes
4.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445905

RESUMEN

F-type ATP synthases play a key role in oxidative and photophosphorylation processes generating adenosine triphosphate (ATP) for most biochemical reactions in living organisms. In contrast to the mitochondrial FOF1-ATP synthases, those of chloroplasts are known to be mostly monomers with approx. 15% fraction of oligomers interacting presumably non-specifically in a thylakoid membrane. To shed light on the nature of this difference we studied interactions of the chloroplast ATP synthases using small-angle X-ray scattering (SAXS) method. Here, we report evidence of I-shaped dimerization of solubilized FOF1-ATP synthases from spinach chloroplasts at different ionic strengths. The structural data were obtained by SAXS and demonstrated dimerization in response to ionic strength. The best model describing SAXS data was two ATP-synthases connected through F1/F1' parts, presumably via their δ-subunits, forming "I" shape dimers. Such I-shaped dimers might possibly connect the neighboring lamellae in thylakoid stacks assuming that the FOF1 monomers comprising such dimers are embedded in parallel opposing stacked thylakoid membrane areas. If this type of dimerization exists in nature, it might be one of the pathways of inhibition of chloroplast FOF1-ATP synthase for preventing ATP hydrolysis in the dark, when ionic strength in plant chloroplasts is rising. Together with a redox switch inserted into a γ-subunit of chloroplast FOF1 and lateral oligomerization, an I-shaped dimerization might comprise a subtle regulatory process of ATP synthesis and stabilize the structure of thylakoid stacks in chloroplasts.


Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Cloroplastos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Polímeros/metabolismo
5.
Sci Rep ; 13(1): 6641, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095116

RESUMEN

Destabilase from the medical leech Hirudo medicinalis belongs to the family of i-type lysozymes. It has two different enzymatic activities: microbial cell walls destruction (muramidase activity), and dissolution of the stabilized fibrin (isopeptidase activity). Both activities are known to be inhibited by sodium chloride at near physiological concentrations, but the structural basis remains unknown. Here we present two crystal structures of destabilase, including a 1.1 Å-resolution structure in complex with sodium ion. Our structures reveal the location of sodium ion between Glu34/Asp46 residues, which were previously recognized as a glycosidase active site. While sodium coordination with these amino acids may explain inhibition of the muramidase activity, its influence on previously suggested Ser49/Lys58 isopeptidase activity dyad is unclear. We revise the Ser49/Lys58 hypothesis and compare sequences of i-type lysozymes with confirmed destabilase activity. We suggest that the general base for the isopeptidase activity is His112 rather than Lys58. pKa calculations of these amino acids, assessed through the 1 µs molecular dynamics simulation, confirm the hypothesis. Our findings highlight the ambiguity of destabilase catalytic residues identification and build foundations for further research of structure-activity relationship of isopeptidase activity as well as structure-based protein design for potential anticoagulant drug development.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Hirudo medicinalis/química , Muramidasa/química , Endopeptidasas/metabolismo , Sanguijuelas/metabolismo , Fibrinolíticos/uso terapéutico
6.
J Am Chem Soc ; 138(41): 13457-13460, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27636908

RESUMEN

Serial crystallography at last generation X-ray synchrotron sources and free electron lasers enabled data collection with micrometer and even submicrometer size crystals, which have resulted in amazing progress in structural biology. However, imaging of small crystals, which although is highly demanded, remains a challenge, especially in the case of membrane protein crystals. Here we describe a new extremely sensitive method of the imaging of protein crystals that is based on coherent anti-Stokes Raman scattering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...