Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small GTPases ; 12(5-6): 372-398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33183150

RESUMEN

Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Homeostasis , Mitocondrias/fisiología , Dinámicas Mitocondriales , Peroxisomas/fisiología , Animales , Humanos , Mitocondrias/enzimología , Peroxisomas/enzimología , Transducción de Señal
2.
Elife ; 82019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31663851

RESUMEN

The autosomal dominant neuronal ceroid lipofuscinoses (NCL) CLN4 is caused by mutations in the synaptic vesicle (SV) protein CSPα. We developed animal models of CLN4 by expressing CLN4 mutant human CSPα (hCSPα) in Drosophila neurons. Similar to patients, CLN4 mutations induced excessive oligomerization of hCSPα and premature lethality in a dose-dependent manner. Instead of being localized to SVs, most CLN4 mutant hCSPα accumulated abnormally, and co-localized with ubiquitinated proteins and the prelysosomal markers HRS and LAMP1. Ultrastructural examination revealed frequent abnormal membrane structures in axons and neuronal somata. The lethality, oligomerization and prelysosomal accumulation induced by CLN4 mutations was attenuated by reducing endogenous wild type (WT) dCSP levels and enhanced by increasing WT levels. Furthermore, reducing the gene dosage of Hsc70 also attenuated CLN4 phenotypes. Taken together, we suggest that CLN4 alleles resemble dominant hypermorphic gain of function mutations that drive excessive oligomerization and impair membrane trafficking.


Asunto(s)
Drosophila melanogaster/genética , Mutación con Ganancia de Función , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila melanogaster/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/ultraestructura , Vesículas Sinápticas/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
3.
J Cell Biol ; 218(3): 993-1010, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30670470

RESUMEN

We genetically characterized the synaptic role of the Drosophila homologue of human DCAF12, a putative cofactor of Cullin4 (Cul4) ubiquitin ligase complexes. Deletion of Drosophila DCAF12 impairs larval locomotion and arrests development. At larval neuromuscular junctions (NMJs), DCAF12 is expressed presynaptically in synaptic boutons, axons, and nuclei of motor neurons. Postsynaptically, DCAF12 is expressed in muscle nuclei and facilitates Cul4-dependent ubiquitination. Genetic experiments identified several mechanistically independent functions of DCAF12 at larval NMJs. First, presynaptic DCAF12 promotes evoked neurotransmitter release. Second, postsynaptic DCAF12 negatively controls the synaptic levels of the glutamate receptor subunits GluRIIA, GluRIIC, and GluRIID. The down-regulation of synaptic GluRIIA subunits by nuclear DCAF12 requires Cul4. Third, presynaptic DCAF12 is required for the expression of synaptic homeostatic potentiation. We suggest that DCAF12 and Cul4 are critical for normal synaptic function and plasticity at larval NMJs.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Drosophila/metabolismo , Homeostasis , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Neurotransmisores/metabolismo , Animales , Proteínas Cullin/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Larva/genética , Larva/metabolismo , Unión Neuromuscular/genética , Neurotransmisores/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Ubiquitinación
4.
eNeuro ; 5(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30263951

RESUMEN

Cell cryopreservation improves reproducibility and enables flexibility in experimental design. Although conventional freezing methodologies have been used to preserve primary neurons, poor cell viability and reduced survival severely limited their utility. We screened several high-performance freezing media and found that CryoStor10 (CS10) provided superior cryoprotection to primary mouse embryonic cortical neurons compared to other commercially-available or traditional reagents, permitting the recovery of 68.8% of cells relative to a fresh dissection. We characterized developmental, morphometric, and functional indicators of neuron maturation and found that, without exception, neurons recovered from cryostorage in CS10 media faithfully recapitulate in vitro neurodevelopment in-step with neurons obtained by fresh dissection. Our method establishes cryopreserved neurons as a reliable, efficient, and equivalent model to fresh neuron cultures.


Asunto(s)
Supervivencia Celular/fisiología , Criopreservación , Neuronas/fisiología , Reproducibilidad de los Resultados , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Criopreservación/métodos , Ratones , Roedores
5.
Neuron ; 92(6): 1152-1154, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009268

RESUMEN

In this issue of Neuron, Han et al. (2016) and Cartoni et al. (2016) define a critical role of mitochondrial transport for successful axon regeneration after injury and provide new insights into intrinsic mechanisms controlling neuronal regeneration capacity in worms and mice.


Asunto(s)
Axones , Mitocondrias , Animales , Transporte Biológico , Ratones , Regeneración Nerviosa , Neuronas , Regeneración
6.
Science ; 349(6250): 873-6, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293964

RESUMEN

Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras-dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits.


Asunto(s)
Membrana Celular/fisiología , Potenciales de la Membrana , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Cricetinae , Drosophila melanogaster , Fibroblastos , Ratones , Neuronas , Transducción de Señal
7.
J Neurosci ; 35(14): 5754-71, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855186

RESUMEN

Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.


Asunto(s)
Transporte Axonal/genética , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Neuronas/ultraestructura , Proteínas de Unión al GTP rho/fisiología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Dineínas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Cinesinas/metabolismo , Larva , Neuronas/metabolismo , Mutación Puntual/genética , Rodaminas/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
8.
Neuron ; 84(4): 659-61, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25459405

RESUMEN

In this issue of Neuron, Wong et al. (2014) report a remarkable evolutionarily conserved role for the Drosophila TRPV1 homolog Inactive controlling synaptic growth at larval neuromuscular junctions by facilitating Ca(2+) release from the endoplasmic reticulum.


Asunto(s)
Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Canales Iónicos/metabolismo , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Canales Catiónicos TRPV/metabolismo , Animales
9.
Sci Rep ; 4: 6962, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25376463

RESUMEN

Mutations in the mitochondrial Ser/Thr kinase PINK1 cause Parkinson's disease. One of the substrates of PINK1 is the outer mitochondrial membrane protein Miro, which regulates mitochondrial transport. In this study, we uncovered novel physiological functions of PINK1-mediated phosphorylation of Miro, using Drosophila as a model. We replaced endogenous Drosophila Miro (DMiro) with transgenically expressed wildtype, or mutant DMiro predicted to resist PINK1-mediated phosphorylation. We found that the expression of phospho-resistant DMiro in a DMiro null mutant background phenocopied a subset of phenotypes of PINK1 null. Specifically, phospho-resistant DMiro increased mitochondrial movement and synaptic growth at larval neuromuscular junctions, and decreased the number of dopaminergic neurons in adult brains. Therefore, PINK1 may inhibit synaptic growth and protect dopaminergic neurons by phosphorylating DMiro. Furthermore, muscle degeneration, swollen mitochondria and locomotor defects found in PINK1 null flies were not observed in phospho-resistant DMiro flies. Thus, our study established an in vivo platform to define functional consequences of PINK1-mediated phosphorylation of its substrates.


Asunto(s)
Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rho/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Humanos , Larva/genética , Larva/metabolismo , Locomoción/genética , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Músculos/metabolismo , Músculos/patología , Mutación , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Transducción de Señal , Sinapsis/metabolismo , Sinapsis/patología , Proteínas de Unión al GTP rho/genética
10.
PLoS Genet ; 10(3): e1004209, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651716

RESUMEN

The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins.


Asunto(s)
Proteínas de Drosophila/genética , Neuronas Receptoras Olfatorias/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Receptores Odorantes/genética , Olfato/genética , Animales , Células Quimiorreceptoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Neuronas Receptoras Olfatorias/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptores Odorantes/metabolismo , Transducción de Señal
11.
Neuron ; 69(6): 1039-41, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21435549

RESUMEN

In this issue of Neuron, two studies by Pielage et al. and Bednarek and Caroni suggest that the cytoskeleton regulator ß-Adducin provides an activity-dependent switch controlling synapse disassembly and assembly at the Drosophila neuromuscular junction (NMJ) and the mouse hippocampus. In mice, the ß-Adducin switch is required for the improvement of learning and memory induced by enriched environments.

12.
J Neurogenet ; 24(3): 120-32, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20583963

RESUMEN

Cysteine-string protein (CSP), a member of the DnaJ/Hsp40 family of cochaperones, is critical for maintaining neurotransmitter release and preventing neurodegeneration. CSP likely forms a chaperone complex on synaptic vesicles together with the 70-kDa heat shock cognate (Hsc70) and the small glutamine-rich tetratricopeptide repeat (TPR)-containing protein (SGT) that may control or protect the assembly and activity of SNARE proteins and various other protein substrates. Here, the author summarizes studies that elucidated CSP's neuroprotective role.


Asunto(s)
Citoprotección/fisiología , Proteínas del Choque Térmico HSP40/fisiología , Trastornos Heredodegenerativos del Sistema Nervioso/prevención & control , Proteínas de la Membrana/fisiología , Neurotransmisores/metabolismo , Animales , Encéfalo/citología , Encéfalo/patología , Encéfalo/fisiología , Drosophila melanogaster , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos
13.
J Neurosci ; 30(5): 1869-81, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130196

RESUMEN

Mitochondria accumulate within nerve terminals and support synaptic function, most notably through ATP production. They can also sequester Ca(2+) during nerve stimulation, but it is unknown whether this limits presynaptic Ca(2+) levels at physiological nerve firing rates. Similarly, it is unclear whether mitochondrial Ca(2+) sequestration differs between functionally different nerve terminals. We addressed these questions using a combination of synthetic and genetically encoded Ca(2+) indicators to examine cytosolic and mitochondrial Ca(2+) levels in presynaptic terminals of tonic (MN13-Ib) and phasic (MNSNb/d-Is) motor neurons in Drosophila, which, as we determined, fire during fictive locomotion at approximately 42 Hz and approximately 8 Hz, respectively. Mitochondrial Ca(2+) sequestration starts in both terminals at approximately 250 nM, exhibits a similar Ca(2+)-uptake affinity (approximately 410 nM), and does not require Ca(2+) release from the endoplasmic reticulum. Nonetheless, mitochondrial Ca(2+) uptake in type Is terminals is more responsive to low-frequency nerve stimulation and this is due to higher cytosolic Ca(2+) levels. Since type Ib terminals have a higher mitochondrial density than Is terminals, it seemed possible that greater mitochondrial Ca(2+) sequestration may be responsible for the lower cytosolic Ca(2+) levels in Ib terminals. However, genetic and pharmacological manipulations of mitochondrial Ca(2+) uptake did not significantly alter nerve-stimulated elevations in cytosolic Ca(2+) levels in either terminal type within physiologically relevant rates of stimulation. Our findings indicate that presynaptic mitochondria have a similar affinity for Ca(2+) in functionally different nerve terminals, but do not limit cytosolic Ca(2+) levels within the range of motor neuron firing rates in situ.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Terminales Presinápticos/metabolismo , Animales , Drosophila , Larva , Mitocondrias/ultraestructura , Neuronas Motoras/ultraestructura , Terminales Presinápticos/ultraestructura , Cálculos de la Vejiga Urinaria/metabolismo
14.
Cell ; 139(2): 229-31, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837027

RESUMEN

Secreted Wnt morphogens mediate cell-cell communication, but the mechanism of Wnt transfer between cells is unknown. Korkut et al. (2009) report that the transmembrane protein Evi is a versatile carrier that guides Wingless to presynaptic terminals of motor neurons and then escorts it across the synaptic cleft. In postsynaptic muscles, Evi promotes Frizzled-2 trafficking.


Asunto(s)
Drosophila/metabolismo , Sinapsis , Animales , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte de Proteínas , Proteína Wnt1/metabolismo
15.
Results Probl Cell Differ ; 48: 107-39, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19582407

RESUMEN

Mitochondrial dynamics and transport have emerged as key factors in the regulation of neuronal differentiation and survival. Mitochondria are dynamically transported in and out of axons and dendrites to maintain neuronal and synaptic function. Transport proceeds through a controlled series of plus- and minus-end directed movements along microtubule tracks (MTs) that are often interrupted by short stops. This bidirectional motility of mitochondria is facilitated by plus end-directed kinesin and minus end-directed dynein motors, and may be coordinated and controlled by a number of mechanisms that integrate intracellular signals to ensure efficient transport and targeting of mitochondria. In this chapter, we discuss our understanding of mechanisms that facilitate mitochondrial transport and delivery to specific target sites in dendrites and axons.


Asunto(s)
Axones/fisiología , Dendritas/fisiología , Mitocondrias/fisiología , Proteínas Motoras Moleculares/fisiología , Animales , Transporte Biológico , Movimiento Celular , Humanos , Cinesinas/fisiología
16.
Genetics ; 182(4): 1051-60, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19487564

RESUMEN

Mechanisms of neuronal mRNA localization and translation are of considerable biological interest. Spatially regulated mRNA translation contributes to cell-fate decisions and axon guidance during development, as well as to long-term synaptic plasticity in adulthood. The Fragile-X Mental Retardation protein (FMRP/dFMR1) is one of the best-studied neuronal translational control molecules and here we describe the identification and early characterization of proteins likely to function in the dFMR1 pathway. Induction of the dFMR1 in sevenless-expressing cells of the Drosophila eye causes a disorganized (rough) eye through a mechanism that requires residues necessary for dFMR1/FMRP's translational repressor function. Several mutations in dco, orb2, pAbp, rm62, and smD3 genes dominantly suppress the sev-dfmr1 rough-eye phenotype, suggesting that they are required for dFMR1-mediated processes. The encoded proteins localize to dFMR1-containing neuronal mRNPs in neurites of cultured neurons, and/or have an effect on dendritic branching predicted for bona fide neuronal translational repressors. Genetic mosaic analyses indicate that dco, orb2, rm62, smD3, and dfmr1 are dispensable for translational repression of hid, a microRNA target gene, known to be repressed in wing discs by the bantam miRNA. Thus, the encoded proteins may function as miRNA- and/or mRNA-specific translational regulators in vivo.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Alelos , Animales , Transporte Biológico , Células Cultivadas , Ojo/patología , Mutación , Neuronas/citología , Ribonucleoproteínas
17.
J Neurosci ; 29(17): 5443-55, 2009 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-19403812

RESUMEN

Microtubule-based transport of mitochondria into dendrites and axons is vital for sustaining neuronal function. Transport along microtubule tracks proceeds in a series of plus and minus end-directed movements that are facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective transport over large distances remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites and serves as a Ca(2+) sensor that controls mitochondrial mobility. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live-imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of both anterograde and retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. Net anterogradely transported mitochondria exhibited reduced kinesin- but normal dynein-mediated movements. Net retrogradely transported mitochondria exhibited much shorter dynein-mediated movements, whereas kinesin-mediated movements were minimally affected. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We suggest that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Proteínas de Drosophila/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Proteínas de Unión al GTP rho/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Dineínas/fisiología , Cinesinas/antagonistas & inhibidores , Cinesinas/fisiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-18639643

RESUMEN

The distribution of mitochondria is sensitive to physiological stresses and changes in metabolic demands. Consequently, it is important to carefully define the conditions facilitating live imaging of mitochondrial transport in dissected animal preparations. In this study, we examined Schneider's and the haemolymph-like solutions HL3 and HL6 for their suitability to image mitochondrial transport in motor axons of dissected Drosophila melanogaster larvae. Overall, mitochondrial transport kinetics in larval motor axons appeared similar among all three solutions. Unexpectedly, HL3 solution selectively increased the length of mitochondria in the context of the net-direction of transport. We also found that mitochondrial transport is sensitive to the extracellular Ca(2+) but not glutamate concentration. High concentrations of extracellular glutamate affected only the ratio between motile and stationary mitochondria. Our study offers a valuable overview of mitochondrial transport kinetics in larval motor axons of Drosophila under various conditions, guiding future studies genetically dissecting mechanisms of mitochondrial transport.


Asunto(s)
Axones/metabolismo , Drosophila/metabolismo , Aumento de la Imagen , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Animales , Axones/ultraestructura , Transporte Biológico , Calcio/metabolismo , Drosophila/ultraestructura , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Ácido Glutámico/metabolismo , Larva , Microscopía Confocal , Mitocondrias/ultraestructura , Neuronas Motoras/ultraestructura
19.
Synapse ; 61(1): 1-16, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17068777

RESUMEN

The synaptic vesicle-associated cysteine string protein (CSP) is critical for neurotransmitter release at the neuromuscular junction (NMJ) of Drosophila, where the approximately 4% of mutant flies lacking CSP that survive to adulthood exhibit spastic jumping and shaking, temperature-sensitive paralysis, and premature death. Previously, it has been shown that CSP is also required for nerve terminal growth and the prevention of neurodegeneration in Drosophila and mice. At larval csp null mutant NMJs of Drosophila, intracellular recordings from the muscle showed that evoked release is significantly reduced at room temperature. However, it remained unclear whether the reduction in evoked release might be due to a loss of synaptic boutons, loss of synapses, and alterations in trafficking of vesicles to synapses. To resolve these issues, we have examined synaptic structure and function of csp null mutant NMJs at the level of single boutons. csp null mutations proportionally reduce the number of synaptic boutons of both motor neurons (1s and 1b) innervating larval muscles 6 and 7, while the number of synapses per bouton remains normal. However, focal recordings from individual synaptic boutons show that nerve-evoked neurotransmitter release is also impaired in both 1s and 1b boutons. Further, our ultrastructural analyses show that the reduction in evoked release at low stimulation frequencies is not due to a loss of synapses or to alterations in docked vesicles at synapses. Together, these data suggest that CSP promotes synaptic growth and evoked neurotransmitter release by mechanistically independent signaling pathways.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Animales , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Potenciales Evocados , Larva/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurotransmisores/metabolismo , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Vesículas Sinápticas/fisiología , Vesículas Sinápticas/ultraestructura
20.
Neuron ; 52(4): 569-71, 2006 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17114040

RESUMEN

Synaptic homeostasis is a phenomenon that prevents the nervous system from descending into chaos. In this issue of Neuron, Frank et al. overturn the notion that synaptic homeostasis at Drosophila NMJs is a slow developmental process. They report that postsynaptic changes are offset within minutes by a homeostatic increase in neurotransmitter release that requires the presynaptic Ca(2+) channel Cacophony.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Animales , Drosophila melanogaster/ultraestructura , Homeostasis/fisiología , Unión Neuromuscular/ultraestructura , Neurotransmisores/metabolismo , Terminales Presinápticos/ultraestructura , Membranas Sinápticas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...