Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(58): e202300796, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37519094

RESUMEN

Herein, we report the synthesis and characterization of two manganese tricarbonyl complexes, MnI (HL)(CO)3 Br (1 a-Br) and MnI (MeL)(CO)3 Br (1 b-Br) (where HL=2-(2'-pyridyl)benzimidazole; MeL=1-methyl-2-(2'-pyridy)benzimidazole) and assayed their electrocatalytic properties for CO2 reduction. A redox-active pyridine benzimidazole ancillary ligand in complex 1 a-Br displayed unique hydrogen atom transfer ability to facilitate electrocatalytic CO2 conversion at a markedly lower reduction potential than that observed for 1 b-Br. Notably, a one-electron reduction of 1 a-Br yields a structurally characterized H-bonded binuclear Mn(I) adduct (2 a') rather than the typically observed Mn(0)-Mn(0) dimer, suggesting a novel method for CO2 activation. Combining advanced electrochemical, spectroscopic, and single crystal X-ray diffraction techniques, we demonstrate the use of an H-atom responsive ligand may reveal an alternative, low-energy pathway for CO2 activation by an earth-abundant metal complex catalyst.

2.
Chem Rev ; 123(13): 8069-8098, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37343385

RESUMEN

Electrochemical carbon capture and concentration (eCCC) offers a promising alternative to thermochemical processes as it circumvents the limitations of temperature-driven capture and release. This review will discuss a wide range of eCCC approaches, starting with the first examples reported in the 1960s and 1970s, then transitioning into more recent approaches and future outlooks. For each approach, the achievements in the field, current challenges, and opportunities for improvement will be described. This review is a comprehensive survey of the eCCC field and evaluates the chemical, theoretical, and electrochemical engineering aspects of different methods to aid in the development of modern economical eCCC technologies that can be utilized in large-scale carbon capture and sequestration (CCS) processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA