Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Food Funct ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011570

RESUMEN

Altered N-glycosylation of proteins on the cell membrane is associated with several neurodegenerative diseases. Microglia are an ideal model for studying glycosylation and neuroinflammation, but whether aberrant N-glycosylation in microglia can be restored by diet remains unknown. Herein, we profiled the N-glycome, proteome, and glycoproteome of the human microglia following lipopolysaccharide (LPS) induction to probe the impact of dietary and gut microbe-derived fatty acids-oleic acid, lauric acid, palmitic acid, valeric acid, butyric acid, isobutyric acid, and propionic acid-on neuroinflammation using liquid chromatography-tandem mass spectrometry. LPS changed N-glycosylation in the microglial glycocalyx altering high mannose and sialofucosylated N-glycans, suggesting the dysregulation of mannosidases, fucosyltransferases, and sialyltransferases. The results were consistent as we observed the restoration effect of the fatty acids, especially oleic acid, on the LPS-treated microglia, specifically on the high mannose and sialofucosylated glycoforms of translocon-associated proteins, SSRA and SSRB along with the cell surface proteins, CD63 and CD166. In addition, proteomic analysis and in silico modeling substantiated the potential of fatty acids in reverting the effects of LPS on microglial N-glycosylation. Our results showed that N-glycosylation is likely affected by diet by restoring alterations following LPS challenge, which may then influence the disease state.

2.
Front Neurol ; 15: 1408220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882697

RESUMEN

Introduction: The role of lipopolysaccharide binding protein (LBP), an inflammation marker of bacterial translocation from the gastrointestinal tract, in Alzheimer's disease (AD) is not clearly understood. Methods: In this study the concentrations of LBP were measured in n = 79 individuals: 20 apolipoprotein E (APOE)3/E3 carriers with and 20 without AD dementia, and 19 APOE3/E4 carriers with and 20 without AD dementia. LBP was found to be enriched in the 1.21-1.25 g/mL density fraction of plasma, which has previously been shown to be enriched in intestinally derived high-density lipoproteins (HDL). LBP concentrations were measured by ELISA. Results: LBP was significantly increased within the 1.21-1.25 g/mL density fraction of plasma in APOE3/E3 AD patients compared to controls, but not APOE3/E4 patients. LBP was positively correlated with Clinical Dementia Rating (CDR) and exhibited an inverse relationship with Verbal Memory Score (VMS). Discussion: These results underscore the potential contribution of gut permeability to bacterial toxins, measured as LBP, as an inflammatory mediator in the development of AD, particularly in individuals with the APOE3/E3 genotype, who are genetically at 4-12-fold lower risk of AD than individuals who express APOE4.

3.
Antioxidants (Basel) ; 13(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38790721

RESUMEN

High-density lipoproteins (HDLs) are key regulators of cellular cholesterol homeostasis but are functionally altered in many chronic diseases. The factors that cause HDL functional loss in chronic disease are not fully understood. It is also unknown what roles antioxidant carotenoids play in protecting HDL against functional loss. The aim of this study was to measure how various disease-associated chemical factors including exposure to (1) Cu2+ ions, (2) hypochlorous acid (HOCL), (3) hydrogen peroxide (H2O2), (4) sialidase, (5) glycosidase, (6) high glucose, (7) high fructose, and (8) acidic pH, and the carotenoid antioxidants (9) lutein and (10) zeaxanthin affect HDL functionality. We hypothesized that some of the modifications would have stronger impacts on HDL particle structure and function than others and that lutein and zeaxanthin would improve HDL function. HDL samples were isolated from generally healthy human plasma and incubated with the corresponding treatments listed above. Cholesterol efflux capacity (CEC), lecithin-cholesterol acyl transferase (LCAT) activity, and paraoxonase-1 (PON1) activity were measured in order to determine changes in HDL functionality. Median HDL particle diameter was increased by acidic pH treatment and reduced by HOCl, high glucose, high fructose, N-glycosidase, and lutein treatments. Acidic pH, oxidation, and fructosylation all reduced HDL CEC, whereas lutein, zeaxanthin, and sialidase treatment improved HDL CEC. LCAT activity was reduced by acidic pH, oxidation, high fructose treatments, and lutein. PON1 activity was reduced by sialidase, glycosidase, H2O2, and fructose and improved by zeaxanthin and lutein treatment. These results show that exposure to oxidizing agents, high fructose, and low pH directly impairs HDL functionality related to cholesterol efflux and particle maturation, whereas deglycosylation impairs HDL antioxidant capacity. On the other hand, the antioxidants lutein and zeaxanthin improve or preserve both HDL cholesterol efflux and antioxidant activity but have no effect on particle maturation.

4.
Anal Chem ; 96(15): 5951-5959, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38563595

RESUMEN

Sphingolipids are an essential subset of bioactive lipids found in most eukaryotic cells that contribute to membrane biophysical properties and are involved in cellular differentiation, recognition, and mediating interactions. The described nanoHPLC-ESI-Q/ToF methodology utilizes known biosynthetic pathways, accurate mass detection, optimized collision-induced disassociation, and a robust nanoflow chromatographic separation for the analysis of intact sphingolipids found in human tissue, cells, and serum. The methodology was developed and validated with an emphasis on addressing the common issues experienced in profiling these amphipathic lipids, which are part of the glycocalyx and lipidome. The high sensitivity obtained using nanorange flow rates with robust chromatographic reproducibility over a wide range of concentrations and injection volumes results in confident identifications for profiling these low-abundant biomolecules.


Asunto(s)
Glicoesfingolípidos , Cromatografía Líquida con Espectrometría de Masas , Humanos , Reproducibilidad de los Resultados , Cromatografía Liquida/métodos , Esfingolípidos , Cromatografía Líquida de Alta Presión/métodos
5.
Curr Dev Nutr ; 7(12): 102041, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130330

RESUMEN

Background: Small-quantity lipid-based nutrient supplements (SQ-LNS) during pregnancy and postnatally were previously shown to improve high-density lipoprotein (HDL) cholesterol efflux capacity (CEC) and length in the children of supplemented mothers at 18 mo of age in the International Lipid-Based Nutrient Supplements (iLiNS) DYAD trial in Ghana. However, the effects of SQ-LNS on maternal HDL functionality during pregnancy are unknown. Objective: The goal of this cross-sectional, secondary outcome analysis was to compare HDL function in mothers supplemented with SQ-LNS vs. iron and folic acid (IFA) during gestation. Methods: HDL CEC and the activities of 3 HDL-associated enzymes were analyzed in archived plasma samples (N = 197) from a subsample of females at 36 weeks of gestation enrolled in the iLiNS-DYAD trial in Ghana. Correlations between HDL function and birth outcomes, inflammatory markers C-reactive protein (CRP) and alpha-1-acid glycoprotein (AGP), and the effects of season were explored to determine the influence of these factors on HDL function in this cohort of pregnant females. Results: There were no statistically significant differences in HDL CEC, plasma lecithin-cholesterol acyltransferase (LCAT) activity, cholesteryl ester transfer protein (CETP) activity, or phospholipid transfer protein (PLTP) activity between mothers supplemented with SQ-LNS compared with IFA control, and no statistically significant relationships between maternal HDL function and childbirth outcomes. LCAT activity was negatively correlated with plasma AGP (R = -0.19, P = 0.007) and CRP (R = -0.28, P < 0.001), CETP and LCAT activity were higher during the dry season compared to the wet season, and PLTP activity was higher in the wet season compared to the dry season. Conclusions: Mothers in Ghana supplemented with SQ-LNS compared with IFA during gestation did not have measurable differences in HDL functionality, and maternal HDL function was not associated with childbirth outcomes. However, seasonal factors and markers of inflammation were associated with HDL function, indicating that these factors had a stronger influence on HDL functionality than SQ-LNS supplementation during pregnancy. Clinical Trial Registry number: The study was registered as NCT00970866. https://clinicaltrials.gov/study/NCT00970866.

6.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894984

RESUMEN

The function of high-density lipoprotein (HDL) particles has emerged as a promising therapeutic target and the measurement of HDL function is a promising diagnostic across several disease states. The vast majority of research on HDL functional biology has focused on adult participants with underlying chronic diseases, whereas limited research has investigated the role of HDL in childhood, pregnancy, and old age. Yet, it is apparent that functional HDL is essential at all life stages for maintaining health. In this review, we discuss current data regarding the role of HDL during childhood, pregnancy and in the elderly, how disturbances in HDL may lead to adverse health outcomes, and knowledge gaps in the role of HDL across these life stages.


Asunto(s)
Longevidad , Adulto , Embarazo , Femenino , Humanos , Anciano , HDL-Colesterol
7.
Curr Atheroscler Rep ; 25(10): 663-677, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37702886

RESUMEN

PURPOSE OF REVIEW: Emerging evidence supports the promise of precision nutritional approaches for cardiovascular disease (CVD) prevention. Here, we discuss current findings from precision nutrition trials and studies reporting substantial inter-individual variability in responses to diets and dietary components relevant to CVD outcomes. We highlight examples where early precision nutrition research already points to actionable intervention targets tailored to an individual's biology and lifestyle. Finally, we make the case for high-density lipoproteins (HDL) as a compelling next generation target for precision nutrition aimed at CVD prevention. HDL possesses complex structural features including diverse protein components, lipids, size distribution, extensive glycosylation, and interacts with the gut microbiome, all of which influence HDL's anti-inflammatory, antioxidant, and cholesterol efflux properties. Elucidating the nuances of HDL structure and function at an individual level may unlock personalized dietary and lifestyle strategies to optimize HDL-mediated atheroprotection and reduce CVD risk. RECENT FINDINGS: Recent human studies have demonstrated that HDL particles are key players in the reduction of CVD risk. Our review highlights the role of HDL and the importance of personalized therapeutic approaches to improve their potential for reducing CVD risk. Factors such as diet, genetics, glycosylation, and gut microbiome interactions can modulate HDL structure and function at the individual level. We emphasize that fractionating HDL into size-based subclasses and measuring particle concentration are necessary to understand HDL biology and for developing the next generation of diagnostics and biomarkers. These discoveries underscore the need to move beyond a one-size-fits-all approach to HDL management. Precision nutrition strategies that account for personalized metabolic, genetic, and lifestyle data hold promise for optimizing HDL therapies and function to mitigate CVD risk more potently. While human studies show HDL play a key role in reducing CVD risk, recent findings indicate that factors such as diet, genetics, glycosylation, and gut microbes modulate HDL function at the individual level, underscoring the need for precision nutrition strategies that account for personalized variability to optimize HDL's potential for mitigating CVD risk.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteínas HDL , Humanos , Lipoproteínas HDL/metabolismo , Enfermedades Cardiovasculares/prevención & control , Biomarcadores , Estado Nutricional , Conducta de Reducción del Riesgo
8.
Front Cardiovasc Med ; 10: 1251122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745091

RESUMEN

Background: Prolonged fasting, characterized by restricting caloric intake for 24 h or more, has garnered attention as a nutritional approach to improve lifespan and support healthy aging. Previous research from our group showed that a single bout of 36-h water-only fasting in humans resulted in a distinct metabolomic signature in plasma and increased levels of bioactive metabolites, which improved macrophage function and lifespan in C. elegans. Objective: This secondary outcome analysis aimed to investigate changes in the plasma lipidome associated with prolonged fasting and explore any potential links with markers of cardiometabolic health and aging. Method: We conducted a controlled pilot study with 20 male and female participants (mean age, 27.5 ± 4.4 years; mean BMI, 24.3 ± 3.1 kg/m2) in four metabolic states: (1) overnight fasted (baseline), (2) 2-h postprandial fed state (fed), (3) 36-h fasted state (fasted), and (4) 2-h postprandial refed state 12 h after the 36-h fast (refed). Plasma lipidomic profiles were analyzed using liquid chromatography and electrospray ionization mass spectrometry. Results: Several lipid classes, including lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylethanolamine, and triacylglycerol were significantly reduced in the 36-h fasted state, while free fatty acids, ceramides, and sphingomyelin were significantly increased compared to overnight fast and fed states (P < 0.05). After correction for multiple testing, 245 out of 832 lipid species were significantly altered in the fasted state compared to baseline (P < 0.05). Random forest models revealed that several lipid species, such as LPE(18:1), LPC(18:2), and FFA(20:1) were important features in discriminating the fasted state from both the overnight fasted and postprandial state. Conclusion: Our findings indicate that prolonged fasting vastly remodels the plasma lipidome and markedly alters the concentrations of several lipid species, which may be sensitive biomarkers of prolonged fasting. These changes in lipid metabolism during prolonged fasting have important implications for the management of cardiometabolic health and healthy aging, and warrant further exploration and validation in larger cohorts and different population groups.

9.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373543

RESUMEN

Research has found that genes specific to microglia are among the strongest risk factors for Alzheimer's disease (AD) and that microglia are critically involved in the etiology of AD. Thus, microglia are an important therapeutic target for novel approaches to the treatment of AD. High-throughput in vitro models to screen molecules for their effectiveness in reversing the pathogenic, pro-inflammatory microglia phenotype are needed. In this study, we used a multi-stimulant approach to test the usefulness of the human microglia cell 3 (HMC3) cell line, immortalized from a human fetal brain-derived primary microglia culture, in duplicating critical aspects of the dysfunctional microglia phenotype. HMC3 microglia were treated with cholesterol (Chol), amyloid beta oligomers (AßO), lipopolysaccharide (LPS), and fructose individually and in combination. HMC3 microglia demonstrated changes in morphology consistent with activation when treated with the combination of Chol + AßO + fructose + LPS. Multiple treatments increased the cellular content of Chol and cholesteryl esters (CE), but only the combination treatment of Chol + AßO + fructose + LPS increased mitochondrial Chol content. Microglia treated with combinations containing Chol + AßO had lower apolipoprotein E (ApoE) secretion, with the combination of Chol + AßO + fructose + LPS having the strongest effect. Combination treatment with Chol + AßO + fructose + LPS also induced APOE and TNF-α expression, reduced ATP production, increased reactive oxygen species (ROS) concentration, and reduced phagocytosis events. These findings suggest that HMC3 microglia treated with the combination of Chol + AßO + fructose + LPS may be a useful high-throughput screening model amenable to testing on 96-well plates to test potential therapeutics to improve microglial function in the context of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Apolipoproteínas E/metabolismo , Línea Celular , Colesterol/farmacología , Fructosa/farmacología , Lipopolisacáridos/farmacología , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Sci Rep ; 13(1): 7816, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188790

RESUMEN

Glycosylation has been found to be altered in the brains of individuals with Alzheimer's disease (AD). However, it is unknown which specific glycosylation-related pathways are altered in AD dementia. Using publicly available RNA-seq datasets covering seven brain regions and including 1724 samples, we identified glycosylation-related genes ubiquitously changed in individuals with AD. Several differentially expressed glycosyltransferases found by RNA-seq were confirmed by qPCR in a different set of human medial temporal cortex (MTC) samples (n = 20 AD vs. 20 controls). N-glycan-related changes predicted by expression changes in these glycosyltransferases were confirmed by mass spectrometry (MS)-based N-glycan analysis in the MTC (n = 9 AD vs. 6 controls). About 80% of glycosylation-related genes were differentially expressed in at least one brain region of AD participants (adjusted p-values < 0.05). Upregulation of MGAT1 and B4GALT1 involved in complex N-linked glycan formation and galactosylation, respectively, were reflected by increased concentrations of corresponding N-glycans. Isozyme-specific changes were observed in expression of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family and the alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase (ST6GALNAC) family of enzymes. Several glycolipid-specific genes (UGT8, PIGM) were upregulated. The critical transcription factors regulating the expression of N-glycosylation and elongation genes were predicted and found to include STAT1 and HSF5. The miRNA predicted to be involved in regulating N-glycosylation and elongation glycosyltransferases were has-miR-1-3p and has-miR-16-5p, respectively. Our findings provide an overview of glycosylation pathways affected by AD and potential regulators of glycosyltransferase expression that deserve further validation and suggest that glycosylation changes occurring in the brains of AD dementia individuals are highly pathway-specific and unique to AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Glicosilación , Transcriptoma , Glicómica , MicroARNs/genética , MicroARNs/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Polisacáridos/metabolismo , Manosiltransferasas/genética
11.
Am J Clin Nutr ; 117(2): 286-297, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36811567

RESUMEN

BACKGROUND: Periodic prolonged fasting (PF) extends lifespan in model organisms and ameliorates multiple disease states both clinically and experimentally owing, in part, to its ability to modulate the immune system. However, the relationship between metabolic factors, immunity, and longevity during PF remains poorly characterized especially in humans. OBJECTIVE: This study aimed to observe the effects of PF in human subjects on the clinical and experimental markers of metabolic and immune health and uncover underlying plasma-borne factors that may be responsible for these effects. METHODS: In this rigorously controlled pilot study (ClinicalTrial.gov identifier, NCT03487679), 20 young males and females participated in a 3-d study protocol including assessments of 4 distinct metabolic states: 1) overnight fasted baseline state, 2) 2-h postprandial fed state, 3) 36-h fasted state, and 4) final 2-h postprandial re-fed state 12 h after the 36-h fasting period. Clinical and experimental markers of immune and metabolic health were assessed for each state along with comprehensive metabolomic profiling of participant plasma. Bioactive metabolites identified to be upregulated in circulation after 36 h of fasting were then assessed for their ability to mimic the effects of fasting in isolated human macrophage as well as the ability to extend lifespan in Caenorhabditis elegans. RESULTS: We showed that PF robustly altered the plasma metabolome and conferred beneficial immunomodulatory effects on human macrophages. We also identified 4 bioactive metabolites that were upregulated during PF (spermidine, 1-methylnicotinamide, palmitoylethanolamide, and oleoylethanolamide) that could replicate these immunomodulatory effects. Furthermore, we found that these metabolites and their combination significantly extended the median lifespan of C. elegans by as much as 96%. CONCLUSIONS: The results of this study reveal multiple functionalities and immunological pathways affected by PF in humans, identify candidates for the development of fasting mimetic compounds, and uncover targets for investigation in longevity research.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Longevidad/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología , Proyectos Piloto , Ayuno , Macrófagos/metabolismo
12.
Glia ; 71(5): 1346-1359, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36692036

RESUMEN

Fucosylation, especially core fucosylation of N-glycans catalyzed by α1-6 fucosyltransferase (fucosyltransferase 8 or FUT8), plays an important role in regulating the peripheral immune system and inflammation. However, its role in microglial activation is poorly understood. Here we used human induced pluripotent stem cells-derived microglia (hiMG) as a model to study the role of FUT8-catalyzed core fucosylation in amyloid-ß oligomer (AßO)-induced microglial activation, in view of its significant relevance to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AßO and lipopolysaccharides (LPS) with a pattern of pro-inflammatory activation as well as enhanced core fucosylation and FUT8 expression within 24 h. Furthermore, we found increased FUT8 expression in both human AD brains and microglia isolated from 5xFAD mice, a model of AD-like cerebral amyloidosis. Inhibition of fucosylation in AßO-stimulated hiMG reduced the induction of pro-inflammatory cytokines, suppressed the activation of p38MAPK, and rectified phagocytic deficits. Specific inhibition of FUT8 by siRNA-mediated knockdown also reduced AßO-induced pro-inflammatory cytokines. We further showed that p53 binds to the two consensus binding sites in the Fut8 promoter, and that p53 knockdown abolished FUT8 overexpression in AßO-activated hiMG. Taken together, our evidence supports that FUT8-catalyzed core fucosylation is a signaling pathway required for AßO-induced microglia activation and that FUT8 is a component of the p53 signaling cascade regulating microglial behavior. Because microglia are a key driver of AD pathogenesis, our results suggest that microglial FUT8 could be an anti-inflammatory therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Fucosiltransferasas/metabolismo , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteína p53 Supresora de Tumor , Células Madre Pluripotentes Inducidas/metabolismo , Citocinas/metabolismo , Catálisis
13.
Nutr Rev ; 81(6): 670-683, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36094616

RESUMEN

Lutein, zeaxanthin, and meso-zeaxanthin are three xanthophyll carotenoid pigments that selectively concentrate in the center of the retina. Humans cannot synthesize lutein and zeaxanthin, so these compounds must be obtained from the diet or supplements, with meso-zeaxanthin being converted from lutein in the macula. Xanthophylls are major components of macular pigments that protect the retina through the provision of oxidant defense and filtering of blue light. The accumulation of these three xanthophylls in the central macula can be quantified with non-invasive methods, such as macular pigment optical density (MPOD). MPOD serves as a useful tool for assessing risk for, and progression of, age-related macular degeneration, the third leading cause of blindness worldwide. Dietary surveys suggest that the dietary intakes of lutein and zeaxanthin are decreasing. In addition to low dietary intake, pregnancy and lactation may compromise the lutein and zeaxanthin status of both the mother and infant. Lutein is found in modest amounts in some orange- and yellow-colored vegetables, yellow corn products, and in egg yolks, but rich sources of zeaxanthin are not commonly consumed. Goji berries contain the highest known levels of zeaxanthin of any food, and regular intake of these bright red berries may help protect against the development of age-related macular degeneration through an increase in MPOD. The purpose of this review is to summarize the protective function of macular xanthophylls in the eye, speculate on the compounds' role in maternal and infant health, suggest the establishment of recommended dietary values for lutein and zeaxanthin, and introduce goji berries as a rich food source of zeaxanthin.


Asunto(s)
Luteína , Degeneración Macular , Femenino , Humanos , Zeaxantinas , Xantófilas , Dieta , Degeneración Macular/prevención & control , Suplementos Dietéticos
14.
Biomedicines ; 10(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551857

RESUMEN

Cholesterol is essential for brain function and structure, however altered cholesterol metabolism and transport are hallmarks of multiple neurodegenerative conditions, including Alzheimer's disease (AD). The well-established link between apolipoprotein E (APOE) genotype and increased AD risk highlights the importance of cholesterol and lipid transport in AD etiology. Whereas more is known about the regulation and dysregulation of cholesterol metabolism and transport in neurons and astrocytes, less is known about how microglia, the immune cells of the brain, handle cholesterol, and the subsequent implications for the ability of microglia to perform their essential functions. Evidence is emerging that a high-cholesterol environment, particularly in the context of defects in the ability to transport cholesterol (e.g., expression of the high-risk APOE4 isoform), can lead to chronic activation, increased inflammatory signaling, and reduced phagocytic capacity, which have been associated with AD pathology. In this narrative review we describe how cholesterol regulates microglia phenotype and function, and discuss what is known about the effects of statins on microglia, as well as highlighting areas of future research to advance knowledge that can lead to the development of novel therapies for the prevention and treatment of AD.

15.
Mol Cell Proteomics ; 21(11): 100427, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36252735

RESUMEN

The proteins in the cell membrane of the brain are modified by glycans in highly interactive regions. The glycans and glycoproteins are involved in cell-cell interactions that are of fundamental importance to the brain. In this study, the comprehensive N-glycome and N-glycoproteome of the brain were determined in 11 functional brain regions, some of them known to be affected with the progression of Alzheimer's disease. N-glycans throughout the regions were generally highly branched and highly sialofucosylated. Regional variations were also found with regard to the glycan types including high mannose and complex-type structures. Glycoproteomic analysis identified the proteins that differed in glycosylation in the various regions. To obtain the broader representation of glycan compositions, four subjects with two in their 70s and two in their 90s representing two Alzheimer's disease subjects, one hippocampal sclerosis subject, and one subject with no cognitive impairment were analyzed. The four subjects were all glycomically mapped across 11 brain regions. Marked differences in the glycomic and glycoproteomic profiles were observed between the samples.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Glicosilación , Proteoma/metabolismo , Polisacáridos/metabolismo , Encéfalo/metabolismo
16.
Front Nutr ; 9: 908534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782954

RESUMEN

Dietary fiber, a nutrient derived mainly from whole grains, vegetables, fruits, and legumes, is known to confer a number of health benefits, yet most Americans consume less than half of the daily recommended amount. Convenience and affordability are key factors determining the ability of individuals to incorporate fiber-rich foods into their diet, and many Americans struggle to access, afford, and prepare foods rich in fiber. The objective of this clinical study was to test the changes in microbial community composition, human metabolomics, and general health markers of a convenient, easy to use prebiotic supplement in generally healthy young participants consuming a diet low in fiber. Twenty healthy adults participated in this randomized, placebo-controlled, double-blind, crossover study which was registered at clinicaltrials.gov as NCT03785860. During the study participants consumed 12 g of a prebiotic fiber supplement and 12 g of placebo daily as a powder mixed with water as part of their habitual diet in randomized order for 4 weeks, with a 4-week washout between treatment arms. Fecal microbial DNA was extracted and sequenced by shallow shotgun sequencing on an Illumina NovaSeq. Plasma metabolites were detected using liquid chromatography-mass spectrometry with untargeted analysis. The phylum Actinobacteria, genus Bifidobacterium, and several Bifidobacterium species (B. bifidum, B. adolescentis, B. breve, B. catenulatum, and B. longum) significantly increased after prebiotic supplementation when compared to the placebo. The abundance of genes associated with the utilization of the prebiotic fiber ingredients (sacA, xfp, xpk) and the production of acetate (poxB, ackA) significantly changed with prebiotic supplementation. Additionally, the abundance of genes associated with the prebiotic utilization (xfp, xpk), acetate production (ackA), and choline to betaine oxidation (gbsB) were significantly correlated with changes in the abundance of the genus Bifidobacterium in the prebiotic group. Plasma concentrations of the bacterially produced metabolite indolepropionate significantly increased. The results of this study demonstrate that an easy to consume, low dose (12 g) of a prebiotic powder taken daily increases the abundance of beneficial bifidobacteria and the production of health-promoting bacteria-derived metabolites in healthy individuals with a habitual low-fiber diet. Clinical Trial Registration: www.clinicaltrials.gov/, identifier: NCT03785860.

17.
Biomedicines ; 10(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35884800

RESUMEN

High-density lipoproteins (HDL) play a critical role in cholesterol homeostasis. Apolipoprotein E (APOE), particularly the E4 allele, is a significant risk factor for Alzheimer's disease but is also a key HDL-associated protein involved in lipid transport in both the periphery and central nervous systems. The objective was to determine the influence of the APOE genotype on HDL function and size in the context of Alzheimer's disease. HDL from 194 participants (non-demented controls, mild cognitive impairment, and Alzheimer's disease dementia) were isolated from the plasma. The HDL cholesterol efflux capacity (CEC), lecithin-cholesterol acyltransferase (LCAT) activity, and particle diameter were measured. Neuropsychological test scores, clinical dementia rating, and magnetic resonance imaging scores were used to determine if cognition is associated with HDL function and size. HDL CEC and LCAT activity were reduced in APOE3E4 carriers compared to APOE3E3 carriers, regardless of diagnosis. In APOE3E3 carriers, CEC and LCAT activity were lower in patients. In APOE3E4 patients, the average particle size was lower. HDL LCAT activity and particle size were positively correlated with the neuropsychological scores and negatively correlated with the clinical dementia rating. We provide evidence for the first time of APOE genotype-specific alterations in HDL particles in Alzheimer's disease and an association between HDL function, size, and cognitive function.

18.
RSC Adv ; 12(29): 18450-18456, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35799915

RESUMEN

In this work, we developed a targeted glycoproteomic method to monitor the site-specific glycoprofiles and quantities of the most abundant HDL-associated proteins using Orbitrap LC-MS for (glyco)peptide target discovery and QqQ LC-MS for quantitative analysis. We conducted a pilot study using the workflow to determine whether HDL protein glycoprofiles are altered in healthy human participants in response to dietary glycan supplementation.

19.
Front Cardiovasc Med ; 9: 928566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694676

RESUMEN

High-density lipoprotein (HDL) particles, long known for their critical role in the prevention of cardiovascular disease (CVD), were recently identified to carry a wide array of glycosylated proteins, and the importance of this glycosylation in the structure, function and metabolism of HDL are starting to emerge. Early studies have demonstrated differential glycosylation of HDL-associated proteins in various pathological states, which may be key to understanding their etiological role in these diseases and may be important for diagnostic development. Given the vast array and specificity of glycosylation pathways, the study of HDL-associated glycosylation has the potential to uncover novel mechanisms and biomarkers of CVD. To date, no large studies examining the relationships between HDL glycosylation profiles and cardiovascular outcomes have been performed. However, small pilot studies provide promising preliminary evidence that such a relationship may exist. In this review article we discuss the current state of the evidence on the glycosylation of HDL-associated proteins, the potential for HDL glycosylation profiling in CVD diagnostics, how glycosylation affects HDL function, and the potential for modifying the glycosylation of HDL-associated proteins to confer therapeutic value.

20.
Alzheimers Dement (Amst) ; 14(1): e12309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496372

RESUMEN

Introduction: There is an increased need for the development of novel blood-based biomarkers for early detection, prevention, or intervention in Alzheimer's disease (AD). This study sought to determine whether serum glycopeptide analysis holds potential for identifying novel diagnostics and prognostics of AD. Methods: The study involved 195 participants, including 96 patients with an AD diagnosis and 99 controls with no cognitive deficit. Utilizing a validated analytical mass spectrometry method, we monitored the site-specific glycosylation of 52 serum glycoproteins. Results: Partial least-squares discriminant analysis revealed that changes in overall sialylation and fucosylation of serum glycoproteins may be indicators of an AD disease state. Loss of fucosylation of immunoglobulin G1 (IgG1) and IgG2 was indicative of AD diagnosis. Individual glycopeptide analysis found separation between the AD patients and controls on complement proteins and apolipoprotein B. Discussion: The results of this study suggest that serum glycoprofiling may be a promising approach for biomarker discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA