Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Neuroendocrinol ; 35(12): e13352, 2023 12.
Article En | MEDLINE | ID: mdl-37885347

We previously provided evidence supporting the existence of a novel leptin-independent body weight homeostat ("the gravitostat") that senses body weight and then initiates a homeostatic feed-back regulation of body weight. We, herein, hypothesize that this feed-back regulation involves a CNS mechanism. To identify populations of neurones of importance for the putative feed-back signal induced by increased loading, high-fat diet-fed rats or mice were implanted intraperitoneally or subcutaneously with capsules weighing ∼15% (Load) or ∼2.5% (Control) of body weight. At 3-5 days after implantation, neuronal activation was assessed in different parts of the brain/brainstem by immunohistochemical detection of FosB. Implantation of weighted capsules, both subcutaneous and intraperitoneal, induced FosB in specific neurones in the medial nucleus of the solitary tract (mNTS), known to integrate information about the metabolic status of the body. These neurones also expressed tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DbH), a pattern typical of norepinephrine neurones. In functional studies, we specifically ablated norepinephrine neurones in mNTS, which attenuated the feed-back regulation of increased load on body weight and food intake. In conclusion, increased load appears to reduce body weight and food intake via activation of norepinephrine neurones in the mNTS.


Norepinephrine , Solitary Nucleus , Rats , Mice , Animals , Norepinephrine/metabolism , Neurons/metabolism , Brain Stem/metabolism , Body Weight/physiology
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1888): 20220219, 2023 10 23.
Article En | MEDLINE | ID: mdl-37661748

Body weight is tightly regulated when outside the normal range. It has been proposed that there are individual-specific lower and upper intervention points for when the homeostatic regulation of body weight is initiated. The nature of the homeostatic mechanisms regulating body weight at the lower and upper ends of the body weight spectrum might differ. Previous studies demonstrate that leptin is the main regulator of body weight at the lower end of the body weight spectrum. We have proposed that land-living animals use gravity to regulate their body weight. We named this homeostatic system the gravitostat and proposed that there are two components of the gravitostat. First, an obvious mechanism involves increased energy consumption in relation to body weight when working against gravity on land. In addition, we propose that there exists a component, involving sensing of the body weight by osteocytes in the weight-bearing bones, resulting in a feedback regulation of energy metabolism and body weight. The gravity-dependent homeostatic regulation is mainly active in obese mice. We, herein, propose the dual hypothesis of body weight regulation, including gravity-dependent actions (= gravitostat) at the upper end and leptin-dependent actions at the lower end of the body weight spectrum. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.


Leptin , Obesity , Animals , Mice , Body Weight , Homeostasis , Energy Metabolism
...