Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Animals (Basel) ; 12(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35454234

RESUMEN

Aleutian disease (AD) is a chronic disease of mink caused by the Aleutian Mink Disease Virus (AMDV) that results in dysfunction of the immune system. The prevalence of asymptomatic AMDV infections suggests a necessity to explore their effects on the cellular mechanisms of non-specific immunity in farmed mink. The study evaluated the phagocytic activity and oxygen metabolism of peripheral blood granulocytes and monocytes in mink with chronic subclinical AMDV infection. Moreover, the intensity of inflammatory processes was assessed based on the serum amyloid A (SAA) concentration. The analyses involved 24 brown mink females aged 12−24 months. The experimental group (group I) consisted of mink with chronic subclinical AMDV infections, and the control group (group II) included healthy animals. The statistical analysis was performed using the Mann-Whitney U rank test. Phagocytic activity of granulocytes and monocytes was carried out using flow cytometry, and SAA concentration was determined with enzyme-linked immunosorbent assay (ELISA). Compared with the control group, there was a significant decrease in the phagocytic activity and oxygen metabolism of granulocytes and monocytes in the AMDV-infected mink (p < 0.05). Additionally, it was found that the mean SAA value was significantly higher in the group infected with AMDV than in the control group (p < 0.05). The obtained data indicate that monitoring the serum SAA levels in mink with asymptomatic inflammation may help assess the health of mink and detect asymptomatic inflammation caused by AMDV infection.

2.
Animals (Basel) ; 11(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065327

RESUMEN

Prenatal and postnatal supplementation with ß-hydroxy-ß-methylbutyrate (HMB) and alpha-ketoglutaric acid (AKG) affects the development and maturation of offspring. Both substances have the potential to stimulate cell metabolism via different routes. However, parity affects development and may alter the effects of dietary supplementation. This study aimed to evaluate the effect of gestational supplementation with HMB and/or AKG to primiparous and multiparous minks on the structure and maturation of the offspring's small intestine. Primiparous and multiparous American minks (Neovison vison), of the standard dark brown type, were supplemented daily with HMB (0.02 g/kg b.w.) and/or AKG (0.4 g/kg b.w.) during gestation (n = 7 for each treatment). Supplementation stopped when the minks gave birth. Intestine samples were collected from 8-month-old male and female offspring during autopsy and histology and histomorphometry analysis was conducted (LAEC approval no 64/2015). Gestational supplementation had a long-term effect, improving the structure of the offspring's intestine toward facilitating absorption and passage of intestinal contents. AKG supplementation affected intestinal absorption (enterocytes, villi and absorptive surface), and HMB affected intestinal peristalsis and secretion (crypts and Goblet cells). These effects were strongly dependent on parity and offspring gender. Present findings have important nutritional implications and should be considered in feeding practices and supplementation plans in animal reproduction.

3.
Animals (Basel) ; 9(12)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817218

RESUMEN

Deoxynivalenol (DON, vomitoxin) is considered one of the most dangerous mycotoxins contaminating cereal products for food and feed. One of the protective methods against the adverse effect of DON on mink health is to use a component such as bentonite as a feed supplement to allow toxins absorption. The aim of this study was to determine the effect of DON, administered alone or with bentonite, on the histological structure of the skin and the content of collagen and elastin. A multiparous minks from control group (not exposed to DON) and a study groups receiving fed with DON-containing wheat for seven months: I: at a concentration of 1.1 mg/kg of feed, II: at a concentration of 3.7 mg/kg; III: DON at a concentration of 3.7 mg/kg and bentonite at a concentration of 0.5 kg/1000 kg of feed (0.05%); and IV: DON at a concentration of 3.7 mg/kg and bentonite at a concentration 2 kg/1000 kg (0.2%). After performing euthanasia and before pelting, skin samples of 2 cm in diameter were drawn from the multiparous minks from the lateral surface of the right anterior limb. Our obtained results clearly indicate that DON administered for a period of seven months at a dose of 1.1 mg/kg significantly changes the thickness of skin of a multiparous mink. It causes an increase in the percentage of elastin from 5.9% to 9.4% and a decrease in immature collagen, which results in a change in the collagen/elastin ratio from 10/1 to 5/1. A dose of 3.7 mg/kg DON in feed without or with 0.05% bentonite causes the absence of immature collagen in the dermis, but the addition of 0.2% bentonite in the feed reveals the presence of immature collagen and increase the percentage of the elastin.

4.
J Vet Res ; 61(3): 357-362, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29978095

RESUMEN

INTRODUCTION: The aim of the study was to investigate the mechanical and geometric properties as well as bone tissue and mineral density of long bones in mink dams exposed to deoxynivalenol (DON) since one day after mating, throughout gestation (ca. 46 d) and lactation to pelt harvesting. MATERIAL AND METHODS: Thirty clinically healthy multiparous minks (Neovison vison) of the standard dark brown type were used. After the mating, the minks were randomly assigned into two equal groups: non-treated control group and DON group fed wheat contaminated naturally with DON at a concentration of 1.1 mg·kg-1 of feed. RESULTS: The final body weight and weight and length of the femur did not differ between the groups. However, DON contamination decreased mechanical endurance of the femur. Furthermore, DON reduced the mean relative wall thickness and vertical wall thickness of the femur, while vertical cortical index, midshaft volume, and cross-sectional moment of inertia increased. Finally, DON contamination did not alter bone tissue density, bone mineral density, or bone mineral content, but decreased the values of all investigated structural and material properties. CONCLUSION: DON at applied concentration probably intensified the process of endosteal resorption, which was the main reason for bone wall thinning and the weakening of the whole bone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA