Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 7(8): 2413-2424, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34114793

RESUMEN

Propylamycin (4'-deoxy-4'-propylparomomycin) is a next generation aminoglycoside antibiotic that displays increased antibacterial potency over the parent, coupled with reduced susceptibility to resistance determinants and reduced ototoxicity in the guinea pig model. Propylamycin nevertheless is inactivated by APH(3')-Ia, a specific aminoglycoside phosphotransferase isozyme that acts on the primary hydroxy group of the ribofuranosyl moiety (at the 5''-position). To overcome this problem, we have prepared and studied the antibacterial and antiribosomal activity of various propylamycin derivatives carrying amino or substituted amino groups at the 5''-position in place of the vulnerable hydroxy group. We find that the introduction of an additional basic amino group at this position, while overcoming the action of the aminoglycoside phosphoryltransferase isozymes acting at the 5''-position as anticipated, results in a significant drop in selectivity for the bacterial over the eukaryotic ribosomes that is predictive of increased ototoxicity. In contrast, 5''-deoxy-5''-formamidopropylamycin retains the excellent across-the-board levels of antibacterial activity of propylamycin itself, while circumventing the action of the offending aminoglycoside phosphotransferase isozymes and affording even greater selectivity for the bacterial over the eukaryotic ribosomes. Other modifications to address the susceptibility of propylamycin to the APH(3')-Ia isozyme including deoxygenation at the 3'-position and incorporation of a 6',5''-bis(hydroxyethylamino) modification offer no particular advantage.


Asunto(s)
Aminoglicósidos , Antibacterianos , Animales , Antibacterianos/toxicidad , Cobayas , Pruebas de Sensibilidad Microbiana , Ribosomas
2.
Eur J Med Chem ; 163: 344-352, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529637

RESUMEN

Following up the open initiative of anti-malarial drug discovery, a GlaxoSmithKline (GSK) phenotypic screening hit was developed to generate hydroxyethylamine based plasmepsin (Plm) inhibitors exhibiting growth inhibition of the malaria parasite Plasmodium falciparum at nanomolar concentrations. Lead optimization studies were performed with the aim of improving Plm inhibition selectivity versus the related human aspartic protease cathepsin D (Cat D). Optimization studies were performed using Plm IV as a readily accessible model protein, the inhibition of which correlates with anti-malarial activity. Guided by sequence alignment of Plms and Cat D, selectivity-inducing structural motifs were modified in the S3 and S4 sub-pocket occupying substituents of the hydroxyethylamine inhibitors. This resulted in potent anti-malarials with an up to 50-fold Plm IV/Cat D selectivity factor. More detailed investigation of the mechanism of action of the selected compounds revealed that they inhibit maturation of the P. falciparum subtilisin-like protease SUB1, and also inhibit parasite egress from erythrocytes. Our results indicate that the anti-malarial activity of the compounds is linked to inhibition of the SUB1 maturase plasmepsin subtype Plm X.


Asunto(s)
Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Catepsina D/antagonistas & inhibidores , Peptidomiméticos/farmacología , Animales , Antimaláricos/química , Ácido Aspártico Endopeptidasas/genética , Catepsina D/genética , Eritrocitos/parasitología , Etilaminas/antagonistas & inhibidores , Humanos , Peptidomiméticos/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Inhibidores de Proteasas/química , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA