Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Sensors (Basel) ; 23(23)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38067712

Human activity recognition (HAR) using wearable sensors enables continuous monitoring for healthcare applications. However, the conventional centralised training of deep learning models on sensor data poses challenges related to privacy, communication costs, and on-device efficiency. This paper proposes a federated learning framework integrating spiking neural networks (SNNs) with long short-term memory (LSTM) networks for energy-efficient and privacy-preserving HAR. The hybrid spiking-LSTM (S-LSTM) model synergistically combines the event-driven efficiency of SNNs and the sequence modelling capability of LSTMs. The model is trained using surrogate gradient learning and backpropagation through time, enabling fully supervised end-to-end learning. Extensive evaluations of two public datasets demonstrate that the proposed approach outperforms LSTM, CNN, and S-CNN models in accuracy and energy efficiency. For instance, the proposed S-LSTM achieved an accuracy of 97.36% and 89.69% for indoor and outdoor scenarios, respectively. Furthermore, the results also showed a significant improvement in energy efficiency of 32.30%, compared to simple LSTM. Additionally, we highlight the significance of personalisation in HAR, where fine-tuning with local data enhances model accuracy by up to 9% for individual users.


Awareness , Privacy , Humans , Physical Phenomena , Communication , Human Activities
2.
Sensors (Basel) ; 23(7)2023 Mar 29.
Article En | MEDLINE | ID: mdl-37050631

Increased demand for fast edge computation and privacy concerns have shifted researchers' focus towards a type of distributed learning known as federated learning (FL). Recently, much research has been carried out on FL; however, a major challenge is the need to tackle the high diversity in different clients. Our research shows that using highly diverse data sets in FL can lead to low accuracy of some local models, which can be categorised as anomalous behaviour. In this paper, we present FedBranched, a clustering-based framework that uses probabilistic methods to create branches of clients and assigns their respective global models. Branching is performed using hidden Markov model clustering (HMM), and a round of branching depends on the diversity of the data. Clustering is performed on Euclidean distances of mean absolute percentage errors (MAPE) obtained from each client at the end of pre-defined communication rounds. The proposed framework was implemented on substation-level energy data with nine clients for short-term load forecasting using an artificial neural network (ANN). FedBranched took two clustering rounds and resulted in two different branches having individual global models. The results show a substantial increase in the average MAPE of all clients; the biggest improvement of 11.36% was observed in one client.

3.
Sensors (Basel) ; 23(6)2023 Mar 08.
Article En | MEDLINE | ID: mdl-36991643

Advancements in technology and awareness of energy conservation and environmental protection have increased the adoption rate of electric vehicles (EVs). The rapidly increasing adoption of EVs may affect grid operation adversely. However, the increased integration of EVs, if managed appropriately, can positively impact the performance of the electrical network in terms of power losses, voltage deviations and transformer overloads. This paper presents a two-stage multi-agent-based scheme for the coordinated charging scheduling of EVs. The first stage uses particle swarm optimization (PSO) at the distribution network operator (DNO) level to determine the optimal power allocation among the participating EV aggregator agents to minimize power losses and voltage deviations, whereas the second stage at the EV aggregator agents level employs a genetic algorithm (GA) to align the charging activities to achieve customers' charging satisfaction in terms of minimum charging cost and waiting time. The proposed method is implemented on the IEEE-33 bus network connected with low-voltage nodes. The coordinated charging plan is executed with the time of use (ToU) and real-time pricing (RTP) schemes, considering EVs' random arrival and departure with two penetration levels. The simulations show promising results in terms of network performance and overall customer charging satisfaction.

4.
Sci Rep ; 11(1): 17590, 2021 09 02.
Article En | MEDLINE | ID: mdl-34475439

Wireless sensing is the state-of-the-art technique for next generation health activity monitoring. Smart homes and healthcare centres have a demand for multi-subject health activity monitoring to cater for future requirements. 5G-sensing coupled with deep learning models has enabled smart health monitoring systems, which have the potential to classify multiple activities based on variations in channel state information (CSI) of wireless signals. Proposed is the first 5G-enabled system operating at 3.75 GHz for multi-subject, in-home health activity monitoring, to the best of the authors' knowledge. Classified are activities of daily life performed by up to 4 subjects, in 16 categories. The proposed system combines subject count and activities performed in different classes together, resulting in simultaneous identification of occupancy count and activities performed. The CSI amplitudes obtained from 51 subcarriers of the wireless signal are processed and combined to capture variations due to simultaneous multi-subject movements. A deep learning convolutional neural network is engineered and trained on the CSI data to differentiate multi-subject activities. The proposed system provides a high average accuracy of 91.25% for single subject movements and an overall high multi-class accuracy of 83% for 4 subjects and 16 classification categories. The proposed system can potentially fulfill the needs of future in-home health activity monitoring and is a viable alternative for monitoring public health and well being.


Activities of Daily Living , Deep Learning , Independent Living , Monitoring, Ambulatory/methods , Neural Networks, Computer , Wireless Technology , Humans , Pattern Recognition, Automated , Wireless Technology/standards
5.
Sensors (Basel) ; 21(14)2021 Jul 20.
Article En | MEDLINE | ID: mdl-34300673

With the advent of smart health, smart cities, and smart grids, the amount of data has grown swiftly. When the collected data is published for valuable information mining, privacy turns out to be a key matter due to the presence of sensitive information. Such sensitive information comprises either a single sensitive attribute (an individual has only one sensitive attribute) or multiple sensitive attributes (an individual can have multiple sensitive attributes). Anonymization of data sets with multiple sensitive attributes presents some unique problems due to the correlation among these attributes. Artificial intelligence techniques can help the data publishers in anonymizing such data. To the best of our knowledge, no fuzzy logic-based privacy model has been proposed until now for privacy preservation of multiple sensitive attributes. In this paper, we propose a novel privacy preserving model F-Classify that uses fuzzy logic for the classification of quasi-identifier and multiple sensitive attributes. Classes are defined based on defined rules, and every tuple is assigned to its class according to attribute value. The working of the F-Classify Algorithm is also verified using HLPN. A wide range of experiments on healthcare data sets acknowledged that F-Classify surpasses its counterparts in terms of privacy and utility. Being based on artificial intelligence, it has a lower execution time than other approaches.


Artificial Intelligence , Privacy , Algorithms , Fuzzy Logic , Models, Theoretical
6.
IEEE Rev Biomed Eng ; 14: 219-239, 2021.
Article En | MEDLINE | ID: mdl-32112683

Atrial Fibrillation (AF) the most commonly occurring type of cardiac arrhythmia is one of the main causes of morbidity and mortality worldwide. The timely diagnosis of AF is an equally important and challenging task because of its asymptomatic and episodic nature. In this paper, state-of-the-art ECG data-based machine learning models and signal processing techniques applied for auto diagnosis of AF are reviewed. Moreover, key biomarkers of AF on ECG and the common methods and equipment used for the collection of ECG data are discussed. Besides that, the modern wearable and implantable ECG sensing technologies used for gathering AF data are presented briefly. In the end, key challenges associated with the development of auto diagnosis solutions of AF are also highlighted. This is the first review paper of its kind that comprehensively presents a discussion on all these aspects related to AF auto-diagnosis in one place. It is observed that there is a dire need for low energy and low cost but accurate auto diagnosis solutions for the proactive management of AF.


Atrial Fibrillation/diagnosis , Diagnosis, Computer-Assisted/methods , Electrocardiography/methods , Machine Learning , Female , Humans , Male , Signal Processing, Computer-Assisted
7.
Sensors (Basel) ; 20(9)2020 May 05.
Article En | MEDLINE | ID: mdl-32380656

Information and Communication Technology (ICT) enabled optimisation of train's passenger traffic flows is a key consideration of transportation under Smart City planning (SCP). Traditional mobility prediction based optimisation and encryption approaches are reactive in nature; however, Artificial Intelligence (AI) driven proactive solutions are required for near real-time optimisation. Leveraging the historical passenger data recorded via Radio Frequency Identification (RFID) sensors installed at the train stations, mobility prediction models can be developed to support and improve the railway operational performance vis-a-vis 5G and beyond. In this paper we have analysed the passenger traffic flows based on an Access, Egress and Interchange (AEI) framework to support train infrastructure against congestion, accidents, overloading carriages and maintenance. This paper predominantly focuses on developing passenger flow predictions using Machine Learning (ML) along with a novel encryption model that is capable of handling the heavy passenger traffic flow in real-time. We have compared and reported the performance of various ML driven flow prediction models using real-world passenger flow data obtained from London Underground and Overground (LUO). Extensive spatio-temporal simulations leveraging realistic mobility prediction models show that an AEI framework can achieve 91.17% prediction accuracy along with secure and light-weight encryption capabilities. Security parameters such as correlation coefficient (<0.01), entropy (>7.70), number of pixel change rate (>99%), unified average change intensity (>33), contrast (>10), homogeneity (<0.3) and energy (<0.01) prove the efficacy of the proposed encryption scheme.

8.
Plant Methods ; 15: 138, 2019.
Article En | MEDLINE | ID: mdl-31832080

BACKGROUND: The demand for effective use of water resources has increased because of ongoing global climate transformations in the agriculture science sector. Cost-effective and timely distributions of the appropriate amount of water are vital not only to maintain a healthy status of plants leaves but to drive the productivity of the crops and achieve economic benefits. In this regard, employing a terahertz (THz) technology can be more reliable and progressive technique due to its distinctive features. This paper presents a novel, and non-invasive machine learning (ML) driven approach using terahertz waves with a swissto12 material characterization kit (MCK) in the frequency range of 0.75 to 1.1 THz in real-life digital agriculture interventions, aiming to develop a feasible and viable technique for the precise estimation of water content (WC) in plants leaves for 4 days. For this purpose, using measurements observations data, multi-domain features are extracted from frequency, time, time-frequency domains to incorporate three different machine learning algorithms such as support vector machine (SVM), K-nearest neighbour (KNN) and decision-tree (D-Tree). RESULTS: The results demonstrated SVM outperformed other classifiers using tenfold and leave-one-observations-out cross-validation for different days classification with an overall accuracy of 98.8%, 97.15%, and 96.82% for Coffee, pea shoot, and baby spinach leaves respectively. In addition, using SFS technique, coffee leaf showed a significant improvement of 15%, 11.9%, 6.5% in computational time for SVM, KNN and D-tree. For pea-shoot, 21.28%, 10.01%, and 8.53% of improvement was noticed in operating time for SVM, KNN and D-Tree classifiers, respectively. Lastly, baby spinach leaf exhibited a further improvement of 21.28% in SVM, 10.01% in KNN, and 8.53% in D-tree in overall operating time for classifiers. These improvements in classifiers produced significant advancements in classification accuracy, indicating a more precise quantification of WC in leaves. CONCLUSION: Thus, the proposed method incorporating ML using terahertz waves can be beneficial for precise estimation of WC in leaves and can provide prolific recommendations and insights for growers to take proactive actions in relations to plants health monitoring.

9.
PLoS One ; 14(1): e0209909, 2019.
Article En | MEDLINE | ID: mdl-30645599

Dementia is a neurological and cognitive condition that affects millions of people around the world. At any given time in the United Kingdom, 1 in 4 hospital beds are occupied by a person with dementia, while about 22% of these hospital admissions are due to preventable causes. In this paper we discuss using Internet of Things (IoT) technologies and in-home sensory devices in combination with machine learning techniques to monitor health and well-being of people with dementia. This will allow us to provide more effective and preventative care and reduce preventable hospital admissions. One of the unique aspects of this work is combining environmental data with physiological data collected via low cost in-home sensory devices to extract actionable information regarding the health and well-being of people with dementia in their own home environment. We have worked with clinicians to design our machine learning algorithms where we focused on developing solutions for real-world settings. In our solutions, we avoid generating too many alerts/alarms to prevent increasing the monitoring and support workload. We have designed an algorithm to detect Urinary Tract Infections (UTI) which is one of the top five reasons of hospital admissions for people with dementia (around 9% of hospital admissions for people with dementia in the UK). To develop the UTI detection algorithm, we have used a Non-negative Matrix Factorisation (NMF) technique to extract latent factors from raw observation and use them for clustering and identifying the possible UTI cases. In addition, we have designed an algorithm for detecting changes in activity patterns to identify early symptoms of cognitive decline or health decline in order to provide personalised and preventative care services. For this purpose, we have used an Isolation Forest (iForest) technique to create a holistic view of the daily activity patterns. This paper describes the algorithms and discusses the evaluation of the work using a large set of real-world data collected from a trial with people with dementia and their caregivers.


Activities of Daily Living , Dementia/physiopathology , Machine Learning , Urinary Tract Infections/diagnosis , Aged , Dementia/therapy , Female , Hospitalization , Humans , Male , Middle Aged , United Kingdom , Urinary Tract Infections/physiopathology , Urinary Tract Infections/therapy
10.
PLoS One ; 13(5): e0195605, 2018.
Article En | MEDLINE | ID: mdl-29723236

The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients' routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%.


Activities of Daily Living , Dementia/physiopathology , Housing , Machine Learning , Monitoring, Physiologic/instrumentation , Entropy , Humans , Markov Chains
11.
Sensors (Basel) ; 12(12): 16838-66, 2012 Dec 06.
Article En | MEDLINE | ID: mdl-23223081

Appliance Load Monitoring (ALM) is essential for energy management solutions, allowing them to obtain appliance-specific energy consumption statistics that can further be used to devise load scheduling strategies for optimal energy utilization. Fine-grained energy monitoring can be achieved by deploying smart power outlets on every device of interest; however it incurs extra hardware cost and installation complexity. Non-Intrusive Load Monitoring (NILM) is an attractive method for energy disaggregation, as it can discern devices from the aggregated data acquired from a single point of measurement. This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing. We review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions.


Algorithms , Renewable Energy , Equipment Design , Humans
...