Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834083

RESUMEN

Atopic dermatitis (AD)/atopic eczema is a chronic relapsing inflammatory skin disease affecting nearly 14% of the adult population. An important pathogenetic pillar in AD is the disrupted skin barrier function (SBF). The atopic stratum corneum (SC) has been examined using several methods, including Raman microspectroscopy, yet so far, there is no depth-dependent analysis over the entire SC thickness. Therefore, we recruited 21 AD patients (9 female, 12 male) and compared the lesional (LAS) with non-lesional atopic skin (nLAS) in vivo with confocal Raman microspectroscopy. Our results demonstrated decreased total intercellular lipid and carotenoid concentrations, as well as a shift towards decreased orthorhombic lateral lipid organisation in LAS. Further, we observed a lower concentration of natural moisturising factor (NMF) and a trend towards increased strongly bound and decreased weakly bound water in LAS. Finally, LAS showed an altered secondary and tertiary keratin structure, demonstrating a more folded keratin state than nLAS. The obtained results are discussed in comparison with healthy skin and yield detailed insights into the atopic SC structure. LAS clearly shows molecular alterations at certain SC depths compared with nLAS which imply a reduced SBF. A thorough understanding of these alterations provides useful information on the aetiology of AD and for the development/control of targeted topical therapies.


Asunto(s)
Dermatitis Atópica , Adulto , Humanos , Masculino , Femenino , Dermatitis Atópica/metabolismo , Recurrencia Local de Neoplasia/patología , Piel/metabolismo , Epidermis/metabolismo , Queratinas/metabolismo , Lípidos/análisis
2.
Exp Dermatol ; 32(10): 1763-1773, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37540053

RESUMEN

Psoriasis, one of the most common skin diseases affecting roughly 2%-3% of the world population, is associated with a reduced skin barrier function (SBF) that might play an important role in its pathophysiology. The SBF is provided primarily by the stratum corneum (SC) of the skin. Previous studies have revealed a higher trans-epidermal water loss, lower hydration, abnormal concentration and composition of intercellular lipids, as well as alterations in secondary keratin structure in the psoriatic SC. We compared on molecular level lesional psoriatic skin (LPS) with non-lesional psoriatic skin (nLPS) from 19 patients non-invasively in vivo, using confocal Raman micro-spectroscopy. By analysing the corresponding Raman spectra, we determined SBF-defining parameters of the SC depth-dependently. Our results revealed a lower total lipid concentration, a shift of lamellar lipid organisation towards more gauche-conformers and an increase of the less dense hexagonal lateral packing of the intercellular lipids in LPS. Furthermore, we observed lower natural moisturising factor concentration, lower total water as well as a strong tendency towards less strongly bound and more weakly bound water molecules in LPS. Finally, we detected a less stable secondary keratin structure with increased ß-sheets, in contrast to the tertiary structure, showing a higher degree of folded keratin in LPS. These findings clearly suggest structural differences indicating a reduced SBF in LPS, and are discussed in juxtaposition to preceding outcomes for psoriatic and healthy skin. Understanding the alterations of the psoriatic SC provides insights into the exact pathophysiology of psoriasis and paves the way for optimal future treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...