RESUMEN
BACKGROUND: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and leads to ~10,000 deaths each year. Nifurtimox and benznidazole are the only two drugs available but have significant adverse effects and limited efficacy. New chemotherapeutic agents are urgently required. Here we identified inhibitors of the acidic M17 leucyl-aminopeptidase from T. cruzi (LAPTc) that show promise as novel starting points for Chagas disease drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: A RapidFire-MS screen with a protease-focused compound library identified novel LAPTc inhibitors. Twenty-eight hits were progressed to the dose-response studies, from which 12 molecules inhibited LAPTc with IC50 < 34 µM. Of these, compound 4 was the most potent hit and mode of inhibition studies indicate that compound 4 is a competitive LAPTc inhibitor, with Ki 0.27 µM. Compound 4 is selective with respect to human LAP3, showing a selectivity index of >500. Compound 4 exhibited sub-micromolar activity against intracellular T. cruzi amastigotes, and while the selectivity-window against the host cells was narrow, no toxicity was observed for un-infected HepG2 cells. In silico modelling of the LAPTc-compound 4 interaction is consistent with the competitive mode of inhibition. Molecular dynamics simulations reproduce the experimental binding strength (-8.95 kcal/mol), and indicate a binding mode based mainly on hydrophobic interactions with active site residues without metal cation coordination. CONCLUSIONS/SIGNIFICANCE: Our data indicates that these new LAPTc inhibitors should be considered for further development as antiparasitic agents for the treatment of Chagas disease.
Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Humanos , Leucil Aminopeptidasa/química , Leucil Aminopeptidasa/farmacología , Leucil Aminopeptidasa/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Descubrimiento de Drogas , Antiparasitarios/uso terapéutico , Tripanocidas/uso terapéuticoRESUMEN
The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.
Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma cruzi , Animales , Humanos , Trypanosoma cruzi/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Dasatinib , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Proliferación Celular , Mamíferos/metabolismoRESUMEN
The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.
Asunto(s)
Proteínas , Proteómica , Biotinilación , Poro Nuclear , Proteínas/química , Proteómica/métodos , Estreptavidina/químicaRESUMEN
Trypanosomatids regulate gene expression mainly at the post-transcriptional level through processing, exporting and stabilising mRNA and control of translation. In most eukaryotes, protein synthesis is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2) at serine 51. Phosphorylation halts overall translation by decreasing availability of initiator tRNAmet to form translating ribosomes. In trypanosomatids, the N-terminus of eIF2α is extended with threonine 169 the homologous phosphorylated residue. Here, we evaluated whether eIF2α phosphorylation varies during the Trypanosoma cruzi life cycle, the etiological agent of Chagas' disease. Total levels of eIF2α are diminished in infective and non-replicative trypomastigotes compared with proliferative forms from the intestine of the insect vector or amastigotes from mammalian cells, consistent with decreased protein synthesis reported in infective forms. eIF2α phosphorylation increases in proliferative intracellular forms prior to differentiation into trypomastigotes. Parasites overexpressing eIF2αT169A or with an endogenous CRISPR/Cas9-generated eIF2αT169A mutation were created and analysis revealed alterations to the proteome, largely unrelated to the presence of µORF in epimastigotes. eIF2αT169A mutant parasites produced fewer trypomastigotes with lower infectivity than wild type, with increased levels of sialylated mucins and oligomannose glycoproteins, and decreased galactofuranose epitopes and the surface protease GP63 on the cell surface. We conclude that eIF2α expression and phosphorylation levels affect proteins relevant for intracellular progression of T. cruzi.
Asunto(s)
Enfermedad de Chagas/parasitología , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/genética , Regulación de la Expresión Génica , Humanos , Estadios del Ciclo de Vida , Mutación , Parasitemia , Fosforilación , Biosíntesis de Proteínas , Proteoma/metabolismo , Proteínas Protozoarias/análisis , Proteínas Protozoarias/biosíntesis , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/patogenicidad , VirulenciaRESUMEN
Leucyl aminopeptidases (LAPs) are involved in multiple cellular functions, which, in the case of infectious diseases, includes participation in the pathogen-host cell interface and pathogenesis. Thus, LAPs are considered good candidate drug targets, and the major M17-LAP from Trypanosoma cruzi (LAPTc) in particular is a promising target for Chagas disease. To exploit LAPTc as a potential target, it is essential to develop potent and selective inhibitors. To achieve this, we report a high-throughput screening method for LAPTc. Two methods were developed and optimized: a Leu-7-amido-4-methylcoumarin-based fluorogenic assay and a RapidFire mass spectrometry (RapidFire MS)-based assay using the LSTVIVR peptide as substrate. Compared with a fluorescence assay, the major advantages of the RapidFire MS assay are a greater signal-to-noise ratio as well as decreased consumption of enzyme. RapidFire MS was validated with the broad-spectrum LAP inhibitors bestatin (IC50 = 0.35 µM) and arphamenine A (IC50 = 15.75 µM). We suggest that RapidFire MS is highly suitable for screening for specific LAPTc inhibitors.
Asunto(s)
Enfermedad de Chagas/diagnóstico , Ensayos Analíticos de Alto Rendimiento , Leucil Aminopeptidasa/aislamiento & purificación , Trypanosoma cruzi/aislamiento & purificación , Secuencia de Aminoácidos/genética , Animales , Enfermedad de Chagas/enzimología , Enfermedad de Chagas/parasitología , Humanos , Cinética , Leucil Aminopeptidasa/genética , Espectrometría de Masas , Especificidad por Sustrato , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/patogenicidadRESUMEN
The M17 leucyl-aminopeptidase of Trypanosoma cruzi (LAPTc) is a novel drug target for Chagas disease. The objective of this work was to obtain recombinant LAPTc (rLAPTc) in Escherichia coli. A LAPTc gene was designed, optimized for its expression in E. coli, synthesized and cloned into the vector pET-19b. Production of rLAPTc in E. coli BL21(DE3)pLysS, induced for 20 h at 25 °C with 1 mM IPTG, yielded soluble rLAPTC that was catalytically active. The rLAPTc enzyme was purified in a single step by IMAC. The recombinant protein was obtained with a purity of 90% and a volumetric yield of 90 mg per liter of culture. The enzymatic activity has an optimal pH of 9.0, and preference for Leu-p-nitroanilide (appKM = 74 µM, appkcat = 4.4 s-1). The optimal temperature is 50 °C, and the cations Mg2+, Cd2+, Ba2+, Ca2+ and Zn2+ at 4 mM inhibited the activity by 60% or more, while Mn2+ inhibited by only 15% and addition of Co2+ activated by 40%. The recombinant enzyme is insensitive toward the protease inhibitors PMSF, TLCK, E-64 and pepstatin A, but is inhibited by EDTA and bestatin. Bestatin is a non-competitive inhibitor of the enzyme with a Ki value of 881 nM. The enzyme is a good target for inhibitor identification.