Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731857

RESUMEN

Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.


Asunto(s)
Erysipelothrix , Gansos , Profagos , Animales , Gansos/microbiología , Polonia , Erysipelothrix/genética , Profagos/genética , Antibacterianos/farmacología , Infecciones por Erysipelothrix/microbiología , Infecciones por Erysipelothrix/genética , Enfermedades de las Aves de Corral/microbiología , Secuenciación Completa del Genoma , Genoma Bacteriano , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genética , Conjugación Genética , Plásmidos/genética
2.
PLoS One ; 18(12): e0295072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38051704

RESUMEN

Animal rehabilitation centres provide a unique opportunity to study the microbiome of wild animals because subjects will be handled for their treatment and can therefore be sampled longitudinally. However, rehabilitation may have unintended consequences on the animals' microbiome because of a less varied and suboptimal diet, possible medical treatment and exposure to a different environment and human handlers. Our study describes the gut microbiome of two large seal cohorts, 50 pups (0-30 days old at arrival) and 23 weaners (more than 60 days old at arrival) of stranded harbour seals admitted for rehabilitation at the Sealcentre Pieterburen in the Netherlands, and the effect of rehabilitation on it. Faecal samples were collected from all seals at arrival, two times during rehabilitation and before release. Only seals that did not receive antimicrobial treatment were included in the study. The average time in rehabilitation was 95 days for the pups and 63 days for the weaners. We observed that during rehabilitation, there was an increase in the relative abundance of some of the Campylobacterota spp and Actinobacteriota spp. The alpha diversity of the pups' microbiome increased significantly during their rehabilitation (p-value <0.05), while there were no significant changes in alpha diversity over time for weaners. We hypothesize that aging is the main reason for the observed changes in the pups' microbiome. At release, the sex of a seal pup was significantly associated with the microbiome's alpha (i.e., Shannon diversity was higher for male pups, p-value <0.001) and beta diversity (p-value 0.001). For weaners, variation in the microbiome composition (beta diversity) at release was partly explained by sex and age of the seal (p-values 0.002 and 0.003 respectively). We mainly observed variables known to change the gut microbiome composition (e.g., age and sex) and conclude that rehabilitation in itself had only minor effects on the gut microbiome of seal pups and seal weaners.


Asunto(s)
Microbioma Gastrointestinal , Medicina , Phoca , Animales , Masculino , Humanos , Animales Salvajes , Envejecimiento
3.
Animals (Basel) ; 13(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003060

RESUMEN

Three Lactococcus lactis strains from the nasal microbiota of healthy pigs were identified as candidates for reducing MRSA in pigs. The safety of nasal administration of a cocktail of these strains was examined in new-born piglets. Six days pre-farrowing, twelve sows were assigned to the placebo or cocktail group (n = 6/group). After farrowing, piglets were administered with either 0.5 mL of the placebo or the cocktail to each nostril. Health status and body weight were monitored at regular time points. Two piglets from three sows/treatment group were euthanised at 24 h, 96 h and 14 d after birth, and conchae, lung and tonsil samples were collected for histopathological and gene expression analysis. Health scores were improved in the cocktail group between d1-5. Body weight and daily gains did not differ between groups. Both groups displayed histological indications of euthanasia and inflammation in the lungs, signifying the findings were not treatment related. The expression of pBD2, TLR9 and IL-1ß in the nasal conchae differed between groups, indicating the cocktail has the potential to modulate immune responses. In summary, the L. lactis cocktail was well tolerated by piglets and there was no negative impact on health scores, growth or lung histopathology indicating that it is safe for administration to new-born piglets.

4.
Front Microbiol ; 14: 1257002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808321

RESUMEN

The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish "gold standard" protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory 'omics' features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices.

5.
Microbiol Spectr ; 11(4): e0006323, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37404183

RESUMEN

The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks (n = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia-Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs.


Asunto(s)
Infecciones por Escherichia coli , Microbioma Gastrointestinal , Humanos , Perros , Animales , Infecciones por Escherichia coli/microbiología , Proteínas Bacterianas/genética , ARN Ribosómico 16S/genética , Escherichia coli/genética , beta-Lactamasas/genética , Bacterias/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Antibacterianos/farmacología
6.
Microb Genom ; 9(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130055

RESUMEN

Vibrio parahaemolyticus is an important food-borne human pathogen and presents immunogenic surface polysaccharides, which can be used to distinguish problematic and disease-causing lineages. V. parahaemolyticus is divided in 16 O-serotypes (O-antigen) and 71 K-serotypes (K-antigen). Agglutination tests are still the gold standard for serotyping, but many V. parahaemolyticus isolates are not typable by agglutination. An alternative for agglutination tests is genotyping using whole-genome sequencing data, by which K- and O- genotypes have been curated and identified previously for other clinically relevant organisms with the software tool Kaptive. In this study, V. parahaemolyticus isolates were serotyped and sequenced, and all known and several novel O- and K-loci were identified. We developed Kaptive databases for all O- and K-loci after manual curation of the loci. In our study, we could genotype the O- and K-loci of 98 and 93 % of the genomes, respectively, with a Kaptive confidence score higher than 'none'. The newly developed Kaptive databases with the identified V. parahaemolyticus O- and K-loci can be used to identify the O- and K-genotypes of V. parahaemolyticus isolates from genome sequences.


Asunto(s)
Vibrio parahaemolyticus , Humanos , Genotipo , Serotipificación , Serogrupo , Antígenos O/genética
7.
Microb Genom ; 9(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862577

RESUMEN

Campylobacter fetus is a pathogen, which is primarily associated with fertility problems in sheep and cattle. In humans, it can cause severe infections that require antimicrobial treatment. However, knowledge on the development of antimicrobial resistance in C. fetus is limited. Moreover, the lack of epidemiological cut-off values (ECOFFs) and clinical breakpoints for C. fetus hinders consistent reporting about wild-type and non-wild-type susceptibility. The aim of this study was to determine the phenotypic susceptibility pattern of C. fetus and to determine the C. fetus resistome [the collection of all antimicrobial resistance genes (ARGs) and their precursors] to describe the genomic basis of antimicrobial resistance in C. fetus isolates over time. Whole-genome sequences of 295 C. fetus isolates, including isolates that were isolated in the period 1939 till the mid 1940s, before the usage of non-synthetic antimicrobials, were analysed for the presence of resistance markers, and phenotypic antimicrobial susceptibility was obtained for a selection of 47 isolates. C. fetus subspecies fetus (Cff) isolates showed multiple phenotypic antimicrobial resistances compared to C. fetus subspecies venerealis (Cfv) isolates that were only intrinsic resistant to nalidixic acid and trimethoprim. Cff isolates showed elevated minimal inhibitory concentrations for cefotaxime and cefquinome that were observed in isolates from 1943 onwards, and Cff isolates contained gyrA substitutions, which conferred resistance to ciprofloxacin. Resistances to aminoglycosides, tetracycline and phenicols were linked to acquired ARGs on mobile genetic elements. A plasmid-derived tet(O) gene in a bovine Cff isolate in 1999 was the first mobile genetic element observed, followed by detection of mobile elements containing tet(O)-aph(3')-III and tet(44)-ant(6)-Ib genes, and a plasmid from a single human isolate in 2003, carrying aph(3')-III-ant(6)-Ib and a chloramphenicol resistance gene (cat). The presence of ARGs in multiple mobile elements distributed among different Cff lineages highlights the risk for spread and further emergence of AMR in C. fetus. Surveillance for these resistances requires the establishment of ECOFFs for C. fetus.


Asunto(s)
Antibacterianos , Campylobacter fetus , Humanos , Animales , Bovinos , Ovinos , Antibacterianos/farmacología , Campylobacter fetus/genética , Farmacorresistencia Bacteriana/genética , Genómica , Inhibidores de la Síntesis de la Proteína , Evolución Molecular
8.
Emerg Infect Dis ; 29(4): 835-838, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958025

RESUMEN

In August 2021, a large-scale mortality event affected harbor porpoises (Phocoena phocoena) in the Netherlands. Pathology and ancillary testing of 22 animals indicated that the most likely cause of death was Erysipelothrix rhusiopathiae infection. This zoonotic agent poses a health hazard for cetaceans and possibly for persons handling cetacean carcasses.


Asunto(s)
Erysipelothrix , Phocoena , Animales , Países Bajos/epidemiología
9.
Microbiome ; 11(1): 33, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36850017

RESUMEN

BACKGROUND: Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS: In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS: Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS: Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract.


Asunto(s)
Microbiota , Trimetoprim , Humanos , Caballos , Animales , Trimetoprim/farmacología , Estudios Longitudinales , ARN Ribosómico 16S/genética , Hospitalización , Heces , Microbiota/genética
10.
Microbiol Spectr ; : e0467022, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36853031

RESUMEN

Staphylococcus schleiferi is an opportunistic pathogen in humans and dogs. Recent taxonomic reassignment of its subspecies (S. schleiferi subsp. schleiferi and S. schleiferi subsp. coagulans) into two separate species (S. schleiferi and S. coagulans) lacks supporting data for diagnostic implications and clinical relevance. We aimed to confirm the reclassification of S. schleiferi by using genomic and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) data for a large set of isolates from humans and animals to investigate their molecular epidemiology and clinical relevance. Routine MALDI-TOF analysis and Illumina sequencing were performed on 165 S. schleiferi isolates from the Netherlands. With 33 publicly available genomes, the study included 198 genomes from 149 dogs, 34 humans, and 15 other sources. The Type Strain Genome Server was used to identify species in the genomes, and the MALDI-TOF MS database was extended to improve species differentiation. MALDI-TOF did not discriminate between S. schleiferi and S. coagulans. Genome phylogeny distinguished the two species in two monophyletic clusters. S. schleiferi isolates originated from humans, while S. coagulans isolates were found in animals and three human isolates clustering with the animal isolates. The sialidase B gene (nanB) was a unique marker gene for S. schleiferi, whereas the chrA gene was exclusive for S. coagulans. The mecA gene was exclusively detected in S. coagulans, as were the lnu(A), blaZ, erm(B/C), tet(O/M), and aac(6')-aph(2'') genes. The MALDI-TOF database extension did not improve differentiation between the two species. Even though our whole-genome sequencing-based approach showed clear differentiation between these two species, it remains critical to identify S. schleiferi and S. coagulans correctly in routine diagnostics. IMPORTANCE This study clearly shows that S. schleiferi is a concern in human hospital settings, whereas S. coagulans predominantly causes infections in animals. S. coagulans is more resistant to antibiotics and can sometimes transmit to humans via exposure to infected dogs. Even though genome-based methods can clearly differentiate the two species, current diagnostic methods used routinely in clinical microbiology laboratories cannot distinguish the two bacterial species.

11.
Clin Infect Dis ; 76(3): e1236-e1243, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35684979

RESUMEN

BACKGROUND: Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of bacteremia worldwide, with older populations having increased risk of invasive bacterial disease. Increasing resistance to first-line antibiotics and emergence of multidrug-resistant (MDR) strains represent major treatment challenges. ExPEC O serotypes are key targets for potential multivalent conjugate vaccine development. Therefore, we evaluated the O serotype distribution and antibiotic resistance profiles of ExPEC strains causing bloodstream infections across 4 regions. METHODS: Blood culture isolates from patients aged ≥60 years collected during 5 retrospective E. coli surveillance studies in Europe, North America, Asia-Pacific, and South America (2011-2017) were analyzed. Isolates were O serotyped by agglutination; O genotyping was performed for nontypeable isolates. Antimicrobial susceptibility testing was also conducted. RESULTS: Among 3217 ExPEC blood culture isolates, the most ubiquitous O serotype was O25 (n = 737 [22.9%]), followed by O2, O6, O1, O75, O15, O8, O16, O4, O18, O77 group, O153, O9, O101/O162, O86, and O13 (prevalence of ≥1%). The prevalence of these O serotypes was generally consistent across regions, apart from South America; together, these 16 O serotypes represented 77.6% of all ExPEC bacteremia isolates analyzed. The overall MDR frequency was 10.7%, with limited variation between regions. Within the MDR subset (n = 345), O25 showed a dominant prevalence of 63.2% (n = 218). CONCLUSIONS: Predominant O serotypes among ExPEC bacteremia isolates are widespread across different regions. O25 was the most prevalent O serotype overall and particularly dominant among MDR isolates. These findings may inform the design of multivalent conjugate vaccines that can target the predominant O serotypes associated with invasive ExPEC disease in older adults.


Asunto(s)
Bacteriemia , Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Humanos , Anciano , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli , Serogrupo , Estudios Retrospectivos , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Bacteriemia/epidemiología , Farmacorresistencia Microbiana
12.
Food Microbiol ; 110: 104162, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36462818

RESUMEN

Food products carry bacteria unless specifically sterilised. These bacteria can be pathogenic, commensal or associated with food spoilage, and may also be resistant to antimicrobials. Current methods for detecting bacteria on food rely on culturing for specific bacteria, a time-consuming process, or 16S rRNA metabarcoding that can identify different taxa but not their genetic content. Directly sequencing metagenomes of food is inefficient as its own DNA vastly outnumbers the bacterial DNA present. We optimised host DNA depletion enabling efficient sequencing of food microbiota, thereby increasing the proportion of non-host DNA sequenced 13-fold (mean; range: 1.3-40-fold) compared to untreated samples. The method performed best on chicken, pork and leafy green samples which had high mean prokaryotic read proportions post-depletion (0.64, 0.74 and 0.74, respectively), with lower mean prokaryotic read proportions in salmon (0.50) and prawn samples (0.19). We show that bacterial compositions and concentrations of antimicrobial resistance (AMR) genes differed by food type, and that salmon metagenomes were influenced by the production/harvesting method. The approach described in this study is an efficient and effective method of identifying and quantifying the predominant bacteria and AMR genes on food.


Asunto(s)
Antibacterianos , Microbiota , Animales , ARN Ribosómico 16S/genética , Farmacorresistencia Bacteriana/genética , ADN , Alimentos Marinos , Salmón
13.
Sci Rep ; 12(1): 15083, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36065056

RESUMEN

Selection and spread of Extended Spectrum Beta-Lactamase (ESBL) -producing Enterobacteriaceae within animal production systems and potential spillover to humans is a major concern. Intramammary treatment of dairy cows with first-generation cephalosporins is a common practice and potentially selects for ESBL-producing Enterobacteriaceae, although it is unknown whether this really occurs in the bovine fecal environment. We aimed to study the potential effects of intramammary application of cephapirin (CP) and cefalonium (CL) to select for ESBL-producing Escherichia coli in the intestinal content of treated dairy cows and in manure slurry, using in vitro competition experiments with ESBL and non-ESBL E. coli isolates. No selection of ESBL-producing E. coli was observed at or below concentrations of 0.8 µg/ml and 4.0 µg/ml in bovine feces for CP and CL, respectively, and at or below 8.0 µg/ml and 4.0 µg/ml, respectively, in manure slurry. We calculated that the maximum concentration of CP and CL after intramammary treatment with commercial products will not exceed 0.29 µg/ml in feces and 0.03 µg/ml in manure slurry. Therefore, the results of this study did not find evidence supporting the selection of ESBL-producing E. coli in bovine feces or in manure slurry after intramammary use of commercial CP or CL-containing products.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Antibacterianos/farmacología , Bovinos , Cefalosporinas/farmacología , Enterobacteriaceae , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Heces , Femenino , Humanos , Estiércol , Pruebas de Sensibilidad Microbiana , beta-Lactamasas
14.
Pathogens ; 11(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36014971

RESUMEN

Staphylococcus pseudintermedius can be transmitted between dogs and their owners and can cause opportunistic infections in humans. Whole genome sequencing was applied to identify the relatedness between isolates from human infections and isolates from dogs in the same households. Genome SNP diversity and distribution of plasmids and antimicrobial resistance genes identified related and unrelated isolates in both households. Our study shows that within-host bacterial diversity is present in S. pseudintermedius, demonstrating that multiple isolates from each host should preferably be sequenced to study transmission dynamics.

16.
FEMS Microbiol Rev ; 46(6)2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35749579

RESUMEN

Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Patógena Extraintestinal , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli Patógena Extraintestinal/genética , Proteínas de Escherichia coli/genética , Genómica , Factores de Virulencia/genética , Filogenia
17.
Front Microbiol ; 13: 872207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572645

RESUMEN

Campylobacter jejuni and Campylobacter coli were previously considered asaccharolytic, but are now known to possess specific saccharide metabolization pathways, including L-fucose. To investigate the influence of the L-fucose utilization cluster on Campylobacter growth, survival and metabolism, we performed comparative genotyping and phenotyping of the C. jejuni reference isolate NCTC11168 (human isolate), C. jejuni Ca1352 (chicken meat isolate), C. jejuni Ca2426 (sheep manure isolate), and C. coli Ca0121 (pig manure isolate), that all possess the L-fucose utilization cluster. All isolates showed enhanced survival and prolonged spiral cell morphology in aging cultures up to day seven in L-fucose-enriched MEMα medium (MEMαF) compared to MEMα. HPLC analysis indicated L-fucose utilization linked to acetate, lactate, pyruvate and succinate production, confirming the activation of the L-fucose pathway in these isolates and its impact on general metabolism. Highest consumption of L-fucose by C. coli Ca0121 is conceivably linked to its enhanced growth performance up to day 7, reaching 9.3 log CFU/ml compared to approximately 8.3 log CFU/ml for the C. jejuni isolates. Genetic analysis of the respective L-fucose clusters revealed several differences, including a 1 bp deletion in the Cj0489 gene of C. jejuni NCTC11168, causing a frameshift in this isolate resulting in two separate genes, Cj0489 and Cj0490, while no apparent phenotype could be linked to the presumed frameshift in this isolate. Additionally, we found that the L-fucose cluster of C. coli Ca0121 was most distant from C. jejuni NCTC11168, but confirmation of links to L-fucose metabolism associated phenotypic traits in C. coli versus C. jejuni isolates requires further studies.

18.
Pathogens ; 11(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35215067

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics.

20.
Microb Genom ; 7(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34846288

RESUMEN

Antimicrobial-resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know whether the genes are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole-genome sequences are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with large single-copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, to predict whether the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 different bacterial taxa, including Campylobacter, Escherichia coli and Salmonella, and has a taxon agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is available both as a standalone tool and via a web interface.


Asunto(s)
Escherichia coli , Genoma Bacteriano , Escherichia coli/genética , Aprendizaje Automático , Plásmidos/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...