Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39061877

RESUMEN

Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis and progression remains unclear. In this study, an experiment was conducted using different dietary lipid levels in the feeding of largemouth bass (Micropterus salmoides) for 11 weeks. The results revealed that the growth performance and whole-body protein content significantly increased with the elevation of dietary lipid levels up to 12%. The activities of antioxidant enzymes as well as the content of GSH (glutathione) in the liver initially increased but later declined as the lipid levels increased; the contents of MDA (malondialdehyde) and GSSG (oxidized glutathione) demonstrated an opposite trend. Moreover, elevating lipid levels in the diet significantly increased liver Fe2+ content, as well as the expressions of TF (Transferrin), TFR (Transferrin receptor), ACSL4 (acyl-CoA synthetase long-chain family member 4), LPCAT3 (lysophosphatidylcholine acyltransferase 3), and LOX12 (Lipoxygenase-12), while decreasing the expressions of GPX4 (glutathione peroxidase 4) and SLC7A11 (Solute carrier family 7 member 11). In conclusion, the optimal lipid level is 12.2%, determined by WG-based linear regression. Excess lipid-level diets can up-regulate the ACSL4/LPCAT3/LOX12 axis, induce hepatic oxidative stress and cell death through a ferroptotic-like program, and decrease growth performance.

2.
Aquat Toxicol ; 261: 106616, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348385

RESUMEN

Oxytetracycline (OTC), a commonly used tetracycline antibiotic in aquaculture, has been found to cause significant damage to the liver of largemouth bass (Micropterus salmoides). This study revealed that OTC can lead to severe histopathological damage, structural changes at the cellular level, and increased levels of reactive oxygen species (ROS) in M. salmoides. Meanwhile, OTC impairs the activities of antioxidant enzyme (such as T-SOD, CAT, GST, GR) by suppressing the activation of MAPK/Nrf2 pathway. OTC disrupts mitochondrial dynamics and mitophagy through via PINK1/Parkin pathway. The accumulation of damaged mitochondria, combined with the inhibition of the antioxidant enzyme system, contributes to elevated ROS levels and oxidative liver damage in M. salmoides. Further investigations demonstrated that an enzyme-treated soy protein (ETSP) dietary supplement can help maintain mitochondrial dynamic balance by inhibiting the PINK1/Parkin pathway and activate the MAPK/Nrf2 pathway to counteract oxidative damage. In summary, these findings highlight that exposure to OTC disrupts mitochondrial dynamics and inhibits the antioxidant enzyme system, ultimately exacerbating oxidative liver damage in M. salmoides. We propose the use of a dietary supplement as a preventive measure against OTC-related side effects, providing valuable insights into the mechanisms of antibiotic toxicity in aquatic environments.


Asunto(s)
Lubina , Oxitetraciclina , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Lubina/metabolismo , Oxitetraciclina/toxicidad , Dinámicas Mitocondriales , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo , Hígado , Antibacterianos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología
3.
Fish Shellfish Immunol ; 139: 108866, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37277049

RESUMEN

Pyroptosis is a newly discovered programmed cell death pathway that plays an essential role in the host's defense against pathogenic infections. This process is orchestrated by inflammasomes, which are intricate multiprotein complexes that orchestrate the activation of caspase and instigate the liberation of proinflammatory cytokines. Additionally, gasdermin family proteins execute their role by forming pores in the cell membrane, ultimately leading to cell lysis. In recent years, pyroptosis has emerged as a promising target for disease management in fish, particularly in the context of infectious diseases. In this review, we provide an overview of the current understanding regarding the role of pyroptosis in fish, focusing on its involvement in host-pathogen interactions and its potential as a therapeutic target. We also highlighted the latest advancements in the field development of pyroptosis inhibitors and their potential applications in fish disease management. Subsequently, we deliberate on the obstacles and future prospects for pyroptosis research in fish, emphasizing the necessity of conducting more comprehensive investigations to unravel the intricate regulatory mechanisms governing this process across diverse fish species and environmental contexts. Finally, this review will also highlight the current limitations and future perspectives of pyroptosis research in aquaculture.


Asunto(s)
Apoptosis , Piroptosis , Animales , Inflamasomas , Caspasas/metabolismo , Manejo de la Enfermedad
4.
Biology (Basel) ; 12(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36979079

RESUMEN

miRNAs are a class of endogenous and evolutionarily conserved noncoding short RNA molecules that post-transcriptionally regulate gene expression through sequence-specific interactions with mRNAs and are capable of controlling gene expression by binding to miRNA targets and interfering with the final protein output. The miRNAs of teleost were firstly reported in zebrafish development, but there are recent studies on the characteristics and functions of miRNAs in fish, especially when compared with mammals. Environmental factors including salinity, oxygen concentration, temperature, feed, pH, environmental chemicals and seawater metal elements may affect the transcriptional and posttranscriptional regulators of miRNAs, contributing to nearly all biological processes. The survival of aquatic fish is constantly challenged by the changes in these environmental factors. Environmental factors can influence miRNA expression, the functions of miRNAs and their target mRNAs. Progress of available information is reported on the environmental effects of the identified miRNAs, miRNA targets and the use of miRNAs in fish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA