Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Phys Ther Sci ; 36(5): 294-302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694003

RESUMEN

[Purpose] To determine the optimal Tuina rolling manipulation parameters for improving peripheral blood circulation and to observe the duration of these effects. [Participants and Methods] A total of 162 healthy males and 20 males with coronary heart disease were recruited, with a mean age of 29.5 ± 6.4 years. The change in blood flow was used as the observation index, and the best combination of parameters was selected using a cyclic orthogonal experiment. We observed changes in rolling manipulation across different time periods and groups. [Results] There were significant interactions between pressure, frequency and duration in the rolling manipulation. The combination mode of 4 kg, 120 repetitions/min and 10 min is the most effective to improve the average blood flow increase rate of popliteal artery. At 15 minutes after manipulation, different degrees of significant increase were observed, but 20 minutes after manipulation, the average blood flow rate returned to the premanipulation level. There was no difference in blood flow rate between healthy males and coronary heart disease patients. [Conclusion] An effective dynamic model of rolling manipulation was constructed. These results contradicted the idea that more pressure and longer continuous manipulation led to stronger effects. The effect of rolling manipulation on improving peripheral circulation can be maintained for 20 minutes.

2.
Front Genet ; 14: 1168142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229193

RESUMEN

The NAC (NAM, ATAF1/2, and CUC2) transcription factors (TF), one of the largest plant-specific gene families, play important roles in the regulation of plant growth and development, stress response and disease resistance. In particular, several NAC TFs have been identified as master regulators of secondary cell wall (SCW) biosynthesis. Iron walnut (Juglans sigillata Dode), an economically important nut and oilseed tree, has been widely planted in the southwest China. The thick and high lignified shell derived endocarp tissues, however, brings troubles in processing processes of products in industry. It is indispensable to dissect the molecular mechanism of thick endocarp formation for further genetic improvement of iron walnut. In the present study, based on genome reference of iron walnut, 117 NAC genes, in total, were identified and characterized in silico, which involves only computational analysis to provide insight into gene function and regulation. We found that the amino acids encoded by these NAC genes varied from 103 to 1,264 in length, and conserved motif numbers ranged from 2 to 10. The JsiNAC genes were unevenly distributed across the genome of 16 chromosomes, and 96 of these genes were identified as segmental duplication genes. Furthermore, 117 JsiNAC genes were divided into 14 subfamilies (A-N) according to the phylogenetic tree based on NAC family members of Arabidopsis thaliana and common walnut (Juglans regia). Furthermore, tissue-specific expression pattern analysis demonstrated that a majority of NAC genes were constitutively expressed in five different tissues (bud, root, fruit, endocarp, and stem xylem), while a total of 19 genes were specifically expressed in endocarp, and most of them also showed high and specific expression levels in the middle and late stages during iron walnut endocarp development. Our result provided a new insight into the gene structure and function of JsiNACs in iron walnut, and identified key candidate JsiNAC genes involved in endocarp development, probably providing mechanistic insight into shell thickness formation across nut species.

3.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047516

RESUMEN

Iron walnut (Juglans sigillata Dode) is a native species in southwestern China that exhibits variation in both fruit morphology and shell thickness. However, the underlying molecular processes controlling hardened endocarp development in walnut has not yet been reported. Here, we generated transcriptional profiles of iron walnut endocarp at three developmental stages using "Dapao", the most common commercial variety. Using pairwise comparisons between these three stages, a total of 8555 non-redundant differentially expressed genes (DEGs) were identified, and more than one-half of the total DEGs exhibited significant differential expression in stage I as compared with stage II or stage III, suggesting that the first stage may ultimately determine the final characteristics of the mature walnut shell. Furthermore, in the clustering analysis of the above DEGs, 3682, 2349, and 2388 genes exhibited the highest expression in stages I, II, and III, respectively. GO enrichment analysis demonstrated that the major transcriptional variation among the three developmental stages was caused by differences in cell growth, plant hormones, metabolic process, and phenylpropanoid metabolism. Namely, using the tissue-specific expression analysis and a gene co-expression network, we identified MADS-box transcription factor JsiFBP2 and bHLH transcription factor JsibHLH94 as candidate regulators of endocarp formation in the early stage, and JsiNAC56 and JsiMYB78 might play key roles in regulating the lignification process of endocarp in the late stage. This study provides useful information for further research to dissect the molecular mechanisms governing the shell formation and development of iron walnut.


Asunto(s)
Juglans , Transcriptoma , Hierro/metabolismo , Nueces , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...