Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Aging (Albany NY) ; 16(5): 4299-4326, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38451187

The tsRNAs (tRNA-derived small RNAs) are a novel class of small non-coding RNAs derived from transfer-RNAs. Colon adenocarcinoma (COAD) is the most malignant intestinal tumor. This study focused on the identification and characterization of tsRNA biomarkers in colon adenocarcinomas. Data processing and bioinformatic analyses were performed with the packages of R and Python software. The cell proliferation, migration and invasion abilities were determined by CCK-8 and transwell assays. Luciferase reporter assay was used to test the binding of tsRNA with its target genes. With computational methods, we identified the tRNA fragments profiles within COAD datasets, and discriminated forty-two differentially expressed tsRNAs between paired colon adenocarcinomas and non-tumor controls. Among the fragments derived from the 3' end of tRNA-His-GUG (a histidyl-transfer-RNA), tRFdb-3013a and tRFdb-3013b (tRFdb-3013a/b) were notably decreased in colon and rectum adenocarcinomas, especially, tRFdb-3013a/b might tend to be down-regulated in patients with lymphatic or vascular invasion present. The clinical survival of colorectal adenocarcinoma patients with low tRFdb-3013a/b expression was significantly worse than that of high expression patients. In colon adenocarcinoma cells, tRFdb-3013a could have inhibited cell proliferations, and reduced cell migration and invasion abilities. The enrichment analyses showed that most of tRFdb-3013a correlated-genes were enriched in the extracellular matrix associated GO terms, phagosome pathway, and a GSEA molecular signature pathway. Additionally, the 3'UTR of ST3GAL1 mRNA was predicted to contain the binding site of tRFdb-3013a/b, tRFdb-3013a/b might directly target and regulate ST3GAL1 expression in colon adenocarcinomas. These results suggested that tRFdb-3013a/b might serve as novel biomarkers for diagnosis and prognosis of colon adenocarcinomas, and act a key player in the progression of colon adenocarcinomas.


Adenocarcinoma , Colonic Neoplasms , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , RNA , RNA, Transfer/genetics , RNA, Transfer/metabolism , Biomarkers
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123942, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38277783

Gefitinib, a highly significant antitumor drug, is now commonly employed in clinical settings as a first-line treatment for patients with advanced or metastatic non-small cell lung cancer, colon cancer, and breast cancer. Herein, a convenient, rapid, and accurate fluorescence method based on nitrogen-doped carbon dots (NCDs) was designed for ultrasensitive detection of gefitinib. The NCDs were easily synthesized through one-pot hydrothermal process using p-phenylenediamine and D-glutamic acid as the precursors. The sensing strategy relied on the fluorescence of NCDs at 345 nm, which was selectively reduced by gefitinib based on the inner filter effect (IFE). With a broad linear range of 0.025-30 µg/mL and a low limit of detection of 5.5 ng/mL, the probe was successfully applied to the detection of gefitinib in human serum samples, demonstrating strong practicality, affordability, and high accuracy. The proposed sensor is simple in design, fast in detection and cost-effective, and exhibits promising application in drug real-time analysis.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Quantum Dots , Humans , Gefitinib , Carbon , Nitrogen , Lung Neoplasms/drug therapy , Spectrometry, Fluorescence/methods , Fluorescent Dyes
3.
Emerg Microbes Infect ; 12(2): 2261556, 2023 Dec.
Article En | MEDLINE | ID: mdl-37725090

Chronic hepatitis B virus (HBV) infection remains one of the major global public health concerns, and it develop into liver fibrosis, cirrhosis, and hepatocellular carcinoma. Recent evidence suggests that endosomal and autophagic vesicles are beneficial for HBV replication. However, it has not been well elucidated how HBV exploits such intracellular vesicle systems for its replication. RAB5A, a member of small GTPase family, plays crucial roles in early endosome biogenesis and autophagy initiation. We observed that RAB5A mRNA and protein levels were significantly increased in HBV-expressing hepatoma cell lines as well as in liver tissue samples from chronic HBV-infected patients. Moreover, RAB5A silencing inhibited HBV replication and subviral particle (SVP) expression significantly in HBV-transfected and -infected hepatoma cells, whereas RAB5A overexpression increased them. Mechanistically, RAB5A increases HBV replication through enhancement of early endosome (EE) - late endosome (LE) activation by interacting with EEA1, as well as enhancing autophagy induction by interacting with VPS34. Additionally, HBV infection enhances RAB5A-mediated dual activation of EE-LE system and autophagy. Collectively, our findings highlight that HBV utilizes RAB5A-mediated dual activation of endosomal and autophagic vesicle pathways for its own replication and persistence. Therefore, RAB5A is a potential target for chronic HBV infection treatment.


Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Monomeric GTP-Binding Proteins , Humans , Autophagy/genetics , Endosomes , Hepatitis B virus/genetics , Virus Replication
4.
Antiviral Res ; 213: 105601, 2023 05.
Article En | MEDLINE | ID: mdl-37068596

Phosphatidylinositol lipids play vital roles in lipid signal transduction, membrane recognition, vesicle transport, and viral replication. Previous studies have revealed that SAC1-like phosphatidylinositol phosphatase (SACM1L/SAC1), which uses phosphatidylinositol-4-phosphate (PI4P) as its substrate, greatly affects the replication of certain bacteria and viruses in vitro. However, it remains unclear whether and how SAC1 modulates hepatitis B virus (HBV) replication in vitro and in vivo. In the present study, we observed that SAC1 silencing significantly increased HBV DNA replication, subviral particle (SVP) expression, and secretion of HBV virions, whereas SAC1 overexpression exerted the opposite effects. Moreover, SAC1 overexpression inhibited HBV DNA replication and SVP expression in a hydrodynamic injection-based HBV-persistent replicating mouse model. Mechanistically, SAC1 silencing increased the number of HBV-containing autophagosomes as well as PI4P levels on the autophagosome membrane. Moreover, SAC1 silencing blocked autophagosome-lysosome fusion by inhibiting the interaction between synaptosomal-associated protein 29 and vesicle-associated membrane protein 8. Collectively, our data indicate that SAC1 significantly inhibits HBV replication by promoting the autophagic degradation of HBV virions. Our findings support that SAC1-mediated phospholipid metabolism greatly modulates certain steps of the HBV life-cycle and provide a new theoretical basis for antiviral therapy.


Hepatitis B virus , Hepatitis B , Animals , Mice , Hepatitis B virus/genetics , Virus Replication , Hepatitis B/metabolism , Phosphatidylinositols/pharmacology , Virion/metabolism , Phosphoric Monoester Hydrolases/pharmacology
5.
J Integr Neurosci ; 22(1): 14, 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36722231

BACKGROUND: The pathogenesis of depression is complex, with the brain's reward system likely to play an important role. The nucleus accumbens (NAc) is a key region in the brain that integrates reward signals. Lipopolysaccharides (LPS) can induce depressive-like behaviors and enhance neuroplasticity in NAc, but the underlying mechanism is still unknown. We previously found that eukaryotic translation initiation factor A1 (eIF5A1) acts as a ribosome-binding protein to regulate protein translation and to promote neuroplasticity. METHODS: In the present study, LPS was administered intraperitoneally to rats and the expression and cellular location of eIF5A1 was then investigated by RT-PCR, Western blotting and immunofluorescence. Subsequently, a neuron-specific lentivirus was used to regulate eIF5A1 expression in vivo and in vitro. Neuroplasticity was then examined by Golgi staining and by measurement of neuronal processes. Finally, proteomic analysis was used to identify proteins regulated by eIF5A1. RESULTS: The results showed that eIF5A1 expression was significantly increased in the NAc neurons of LPS rats. Following the knockdown of eIF5A1 in NAc neurons, the LPS-induced increases in neuronal arbors and spine density were significantly attenuated. Depression-like behaviors were also reduced. Neurite outgrowth of NAc neurons in vitro also increased or decreased in parallel with the increase or decrease in eIF5A1 expression, respectively. The proteomic results showed that eIF5A1 regulates the expression of many neuroplasticity-related proteins in neurons. CONCLUSIONS: These results confirm that eIF5A1 is involved in LPS-induced depression-like behavior by increasing neuroplasticity in the NAc. Our study also suggests the brain's reward system may play an important role in the pathogenesis of depression.


Depression , Nucleus Accumbens , Peptide Initiation Factors , Animals , Rats , Depression/chemically induced , Lipopolysaccharides , Neuronal Plasticity , Proteomics , Peptide Initiation Factors/genetics , Eukaryotic Translation Initiation Factor 5A
6.
Dis Markers ; 2022: 8708312, 2022.
Article En | MEDLINE | ID: mdl-36426134

The tsRNAs (tRNA-derived small RNAs) are new types of small noncoding RNAs derived from tRNAs. Gliomas are well-known malignant brain tumors. The study focused on tsRNA characterizations within gliomas. Datasets processing, bioinformatics analyses, and visualizations were performed with the packages of Python and R. Cell proliferations were demonstrated via CCK8 assays and colony formation assays, and in vivo xenograft experiments. Dual-luciferase reporter assay was performed to confirm the binding of tsRNA with its targets. Via using bioinformatics approaches, the hundreds of tsRNAs with available expression abundance were identified in gliomas dataset, most of them derived from D-loop or T-loop fragments of tRNAs. Among tsRNAs derived from tRNA-Cys-GCA, tRFdb-3003a and tRFdb-3003b (tRFdb-3003a/b) were remarkably down-regulated in gliomas. The survival outcome of gliomas patients with low tRFdb-3003a/b expressions was notably worse than that of high-expression patients. In glioma cells, tRFdb-3003a could suppress cells proliferation and colony formation ability. In vivo, tRFdb-3003a suppressed the tumor growth of xenograft gliomas. Enrichment analyses displayed the tRFdb-3003a-related mRNAs were enriched in the specific GO terms, spliceosome and autophagy pathways, and three GSEA molecular signatures. Mechanically, 3'-UTR regions of VAV2 mRNA were predicted to contain the binding positions of tRFdb-3003a/b, tRFdb-3003a and tRFdb-3003b was effective to reduce the relative luciferase activity of cells with VAV2 wild-type reporter. Overexpression of tRFdb-3003a/b could down-regulated the expression levels of VAV2 protein and mRNA in glioma cells. The tRNA-Cys-GCA derived tRFdb-3003a and tRFdb-3003b might act as key player in tumor progressions of gliomas; tRFdb-3003a/b might directly bind to VAV2 and regulate VAV2 expressions in gliomas.


Glioma , MicroRNAs , RNA, Small Untranslated , Humans , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Small Untranslated/genetics , Glioma/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism
7.
Cancer Manag Res ; 14: 2609-2623, 2022.
Article En | MEDLINE | ID: mdl-36072386

Purpose: tsRNA is a type of small non-coding RNA derived from tRNA. Diffuse gliomas are the most common brain tumors. This investigation focused on tsRNA identification and characterization within gliomas. Methods: The sequences of human tRNA and tsRNAs were taken from GtRNAdb, tRFdb and tRFexplorer databases. Data processing and bioinformatic analysis were performed with R or Python software. The expression of tsRNAs in glioma tissues was analyzed by qRT-PCR assay. Results: With computational approaches, we identified hundreds of tsRNAs with available expression abundance in the glioma datasets, most of them derived from the 3' end or 5' end of mature tRNA. Among the tsRNAs derived from tRNA-Leu-CAA, ts-26, tRFdb-3012a, and tRFdb-3012b (tRFdb-3012a/b) were significantly decreased in diffuse gliomas. The clinical survivals of glioma patients with low tsRNA (ts-26, tRFdb-3012a, and tRFdb-3012b) expression were remarkably worse than that of those with high expression. Expression of tRFdb-3012a/b was correlated with IDH mutant status and MGMT promoter mutation in gliomas, and tRFdb-3012a/b and ts-23 tended to be highly expressed in patients with the IDH mutant. The enrichment analysis showed that some tRFdb-3012a/b-related genes were enriched in RNA splicing and processing, the spliceosome pathway and astrocyte molecular signatures. Moreover, the 3' untranslated region of the RBM43 gene was predicted to contain putative binding sites of tRFdb-3012a/b, ts-26 may directly bind to the 3' untranslated region of the HOXA13 gene, and the expressions of both RBM43 and HOXA13 were up-regulated in diffuse gliomas. High RBM43 and HOXA13 expressions were significantly associated with poor survival outcome of glioma patients. Conclusion: These results suggest that tRNA-Leu-CAA-derived tsRNAs (ts-26, tRFdb-3012a, and tRFdb-3012b) could be explored as diagnostic and prognostic biomarkers for diffuse gliomas, and tRFdb-3012a/b and ts-26 may play an important role in the progression of gliomas, through binding RBM43 and HOXA13, respectively.

8.
Brain Sci ; 12(8)2022 Aug 03.
Article En | MEDLINE | ID: mdl-36009090

Brain microvascular endothelial cells (BMECs) linked by tight junctions play important roles in cerebral ischemia. Intercellular signaling via extracellular vesicles (EVs) is an underappreciated mode of cell-cell crosstalk. This study aims to explore the potential function of long noncoding RNAs (lncRNAs) in BMECs' secreted EVs. We subjected primary human and rat BMECs to oxygen and glucose deprivation (OGD). EVs were enriched for RNA sequencing. A comparison of the sequencing results revealed 146 upregulated lncRNAs and 331 downregulated lncRNAs in human cells and 1215 upregulated lncRNAs and 1200 downregulated lncRNAs in rat cells. Next, we analyzed the genes that were coexpressed with the differentially expressed (DE) lncRNAs on chromosomes and performed Gene Ontology (GO) and signaling pathway enrichment analyses. The results showed that the lncRNAs may play roles in apoptosis, the TNF signaling pathway, and leukocyte transendothelial migration. Next, three conserved lncRNAs between humans and rats were analyzed and confirmed using PCR. The binding proteins of these three lncRNAs in human astrocytes were identified via RNA pulldown and mass spectrometry. These proteins could regulate mRNA stability and translation. Additionally, the lentivirus was used to upregulate them in human microglial HMC3 cells. The results showed NR_002323.2 induced microglial M1 activation. Therefore, these results suggest that BMECs' EVs carry the lncRNAs, which may regulate gliocyte function after cerebral ischemia.

9.
Metab Brain Dis ; 37(6): 1977-1987, 2022 08.
Article En | MEDLINE | ID: mdl-35699856

Cerebral ischemia causes hypoxic injury and inflammation, and brain microvascular endothelial cells (BMVECs) dysfunction is an initial stage of blood-brain barrier disruption. Endothelial cells secrete extracellular vesicles (EVs) that are involved in intercellular signal transduction. EVs contain a variety of RNAs, proteins, and metabolites. Circular RNA (circRNA) is a member of the non-coding RNA. The expression profile and potential function of circRNAs in BMVECs are unknown. Here, human BMVECs have undergone hypoxia or TNF-α induction, and the changes in circRNAs were measured by RNA sequencing. A total of 70 circRNAs showed differential expression, including 43 previously unrecorded circRNAs and 27 recorded circRNAs. Since astrocyte end-feet encircle endothelial cells, they are considered the main targets of the EVs from BMVEC. The miRNA sequence data and bioinformatics were used to predict the circRNA-miRNA-mRNA networks in astrocytes. The gene ontology (GO) analysis showed the main downstream targets of circRNAs are DNA transcription regulation and protein kinase-related signaling pathways. These results suggest that altering circRNAs may be a potential therapeutic target for cerebral ischemia induced hypoxic injury and inflammation.


Brain Ischemia , Extracellular Vesicles , MicroRNAs , Brain/metabolism , Brain Ischemia/genetics , Endothelial Cells/metabolism , Gene Expression Profiling/methods , Humans , Inflammation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
10.
Cell Death Dis ; 13(6): 556, 2022 06 18.
Article En | MEDLINE | ID: mdl-35717493

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy mainly due to its extensive metastasis. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a newly discovered splice variant of solute carrier organic anion transporter family member 1B3 (SLCO1B3), has been reported to be overexpressed in several types of cancer. However, the biological function of Ct-OATP1B3 remains largely unknown. Here, we reveal that Ct-OATP1B3 is overexpressed in HGSOC and promotes the metastasis of HGSOC in vivo and in vitro. Mechanically, Ct-OATP1B3 directly interacts with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an RNA-binding protein, which results in enhancement of the mRNA stability and expression of carnitine palmitoyltransferase 1A (CPT1A) and NADH:Ubiquinone Oxidoreductase Subunit A2 (NDUFA2), leading to increased mitochondrial fatty acid beta-oxidation (FAO) and oxidative phosphorylation (OXPHOS) activities. The increased FAO and OXPHOS activities further facilitate adenosine triphosphate (ATP) production and cellular lamellipodia formation, which is the initial step in the processes of tumor cell migration and invasion. Taken together, our study provides an insight into the function and underlying mechanism of Ct-OATP1B3 in HGSOC metastasis, and highlights Ct-OATP1B3 as a novel prognostic marker as well as therapeutic target in HGSOC.


Organic Anion Transporters , Ovarian Neoplasms , Fatty Acids , Female , Humans , Ovarian Neoplasms/genetics , Oxidative Phosphorylation , RNA-Binding Proteins
12.
Front Immunol ; 11: 1757, 2020.
Article En | MEDLINE | ID: mdl-33013829

The pentraxin is a superfamily of proteins with the same domain known as the pentraxin domain at C-terminal. This family has two subgroups, namely; short pentraxins (C-reactive protein and serum amyloid P component) and long pentraxins (neuronal pentraxin 1, neuronal pentraxin 2, neuronal pentraxin receptor, pentraxin 3 and pentraxin 4). Each group shares a similar structure with the pentameric complexes arranged in a discoid shape. Previous studies revealed the functions of different pentraxin family members. Most of them are associated with human innate immunity. Inflammation has commonly been associated with tumor progression, implying that the pentraxin family might also participate in tumor progression. Therefore, we reviewed the basic characteristics and functions of the pentraxin family and their role in tumor progression.


C-Reactive Protein/metabolism , Neoplasms/metabolism , Nerve Tissue Proteins/metabolism , Serum Amyloid P-Component/metabolism , Animals , C-Reactive Protein/chemistry , C-Reactive Protein/immunology , Disease Progression , Humans , Immunity, Innate , Neoplasms/immunology , Neoplasms/pathology , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/immunology , Protein Conformation , Serum Amyloid P-Component/chemistry , Serum Amyloid P-Component/immunology , Signal Transduction , Structure-Activity Relationship , Tumor Microenvironment
13.
Front Cell Dev Biol ; 8: 347, 2020.
Article En | MEDLINE | ID: mdl-32523949

Single-nucleotide variants (SNVs) are the most common genetic variants and universally present in the human genome. Genome-wide association studies (GWASs) have identified a great number of disease or trait-associated variants, many of which are located in non-coding regions. Long intergenic non-protein coding RNAs (lincRNAs) are the major subtype of long non-coding RNAs; lincRNAs play crucial roles in various disorders and cellular models via multiple mechanisms. With rapid growth in the number of the identified lincRNAs and genetic variants, there is great demand for an investigation of SNVs in lincRNAs. Hence, in this article, we mainly summarize the significant role of SNVs within human lincRNA regions. Some pivotal variants may serve as risk factors for the development of various disorders, especially cancer. They may also act as important regulatory signatures involved in the modulation of lincRNAs in a tissue- or disorder-specific manner. An increasing number of researches indicate that lincRNA variants would potentially provide additional options for genetic testing and disease risk assessment in the personalized medicine era.

14.
Aging (Albany NY) ; 12(3): 2347-2372, 2020 02 05.
Article En | MEDLINE | ID: mdl-32023222

The present study focused on the expression patterns, prognostic values and potential mechanism of the PDI family in gliomas. Most PDI family members' mRNA expressions were observed significantly different between gliomas classified by clinical features. Construction of the PDI signature, cluster and risk score models of glioma was done using GSVA, consensus clustering analysis, and LASSO Cox regression analysis respectively. High values of PDI signature/ risk score and cluster 1 in gliomas were associated with malignant clinicopathological characteristics and poor prognosis. Analysis of the distinctive genomic alterations in gliomas revealed that many cases having high PDI signature and risk score were associated with genomic aberrations of driver oncogenes. GSVA analysis showed that PDI family was involved in many signaling pathways in ERAD, apoptosis, and MHC class I among many more. Prognostic nomogram revealed that the risk score was a good prognosis indicator for gliomas. The qRT-PCR and immunohistochemistry confirmed that P4HB, PDIA4 and PDIA5 were overexpressed in gliomas. In summary, this research highlighted the clinical importance of PDI family in tumorigenesis and progression in gliomas.


Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Glioma/enzymology , Glioma/pathology , Protein Disulfide-Isomerases/metabolism , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Brain Neoplasms/mortality , Disease Progression , Female , Glioma/mortality , Humans , Male , Middle Aged , Prognosis , Protein Disulfide-Isomerases/genetics , RNA, Messenger/analysis , Transcriptome
15.
Drug Metab Rev ; 52(1): 125-138, 2020 02.
Article En | MEDLINE | ID: mdl-31984805

The gastrointestinal microbiota and host co-evolve into a complex 'super-organism,' and this relationship plays a vital role in many physiological processes, such as drug metabolism. Ginseng is an important medicinal resource and the main ingredients are ginsenosides, which are less polar, difficult to absorb, and have low bioavailability. However, studies have shown that the biological activity of ginsenosides such as compound K (CK), ginsenoside Rg3 (Rg3), ginsenoside Rh2 (Rh2), 20(S)-protopanaxatriol (20(S)-PPT), and 20(S)-protopanaxadiol (20(S)-PPD) is closely related to the gastrointestinal microbiota. In this paper, the metabolic pathway of gastrointestinal microbiota-generated ginsenosides and the main pharmacological effects of these metabolites are discussed. Furthermore, our study provides a new insight into the discovery of novel drugs. Specifically, in new drug screening process, candidates with low biological activity and bioavailability should not be excluded. Because their metabolites may exhibit good pharmacological effects due to the involvement of the gastrointestinal microbiota. In addition, in further research studies to develop probiotics, a combination of agents could exert greater efficacy than single agents. Moreover, differences in lifestyle and diet lead to differences in the gastrointestinal microbiota in the human body. Therefore, administration of the same drug dose to different individuals could elicit different therapeutic effects, owing to the involvement of the gastrointestinal microbiota. Thus, treatment accuracy could be achieved by detecting the gastrointestinal microbiota before drug treatment.HighlightsGastrointestinal microbiota plays a decisive role in bioactivities of ginsenosides.The metabolic pathway and main pharmacological effects of ginsenoside metabolites are discussed.It provides new insights into novel drug discovery and further research to find probiotic, combinations to exert greater efficacy.Differences in lifestyle and diet, varies the gastrointestinal microbiota in the human body. However, the same dose of a drug producing different therapeutic effects may involve gastrointestinal microbiota.


Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Ginsenosides/metabolism , Ginsenosides/pharmacology , Animals , Humans
16.
Biomed Pharmacother ; 123: 109791, 2020 Mar.
Article En | MEDLINE | ID: mdl-31887541

BACKGROUND: SREBP1 is a well-known transcript factor regulating lipogenesis. It has been reported to play an important role in tumor progress in recent years. However, the roles of SREBP1 in differentiated thyroid cancer (DTC) are uncertain. Based on this, we aimed to investigate the expression of SREBP1 and the influence of SREBP1 on DTC patients. METHODS: qRT-PCR and immunohistochemistry were used to detect the expression of SREBPs in DTC tissues and the adjacent normal tissues. The following methods, including the MTS, colony-forming assay, flow cytometry and Hoechst staining were used to detect the biological function of thyroid cancer cells based on SREBP1 interference or not. RESULTS: the expression of SREBP1 was significantly different among DTCs, thyroid nodules and the adjacent normal tissues. Briefly, SREBP1 was upregulated follow with the malignancy, but there was no significant difference of SREBP2 between thyroid nodules and the adjacent normal tissues. Further, the ROC curve showed that SREBP1 has higher diagnostic value than SREBP2. SREBP1 expression was significantly related to the tumor size and lymph node metastasis in DTCs. In vitro, the proliferation of thyroid cancer cells was suppressed obviously after interfered with SREBP1, and the apoptotic cells was increased. Further, SREBP1 expression was also associated with the short-term efficacy of levothyroxine in DTC patients. CONCLUSION: this is the first time to report that SREBP1 is an oncogene and a pro-proliferation factor in thyroid cancer, indicating that SREBP1 may serve as a potential biomarker and therapeutic target in thyroid cancer.


Biomarkers, Tumor/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Thyroid Neoplasms/drug therapy , Thyroxine/administration & dosage , Adult , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis/genetics , Male , Middle Aged , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Treatment Outcome , Young Adult
17.
Cancer Lett ; 2018 Nov 29.
Article En | MEDLINE | ID: mdl-30503557

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

18.
Drug Des Devel Ther ; 12: 1363-1371, 2018.
Article En | MEDLINE | ID: mdl-29861627

BACKGROUND/AIM: Repressor element silencing transcription factor (REST) is a transcription repressor, expressed in several malignancies. This study aims to evaluate the prognostic values of REST and its splicing variant REST4 in glioma, and investigate the potential correlation between REST and REST4. METHODS: REST and REST4 expression values were evaluated by qRT-PCR in 89 patients with gliomas and 10 with normal brain tissues. RESULTS: Upregulation of REST was related to higher World Health Organization (WHO) grade, larger tumor size, higher ki67, and higher p53 positive rate. After radiotherapy+temozolomide (RT+TMZ) treatment, low REST expression patients could get better therapeutic efficacy (P=0.031). The positive rate of REST4 expression was only 13.5% in glioma tissues, and REST4 expression was not associated with clinical characteristics and REST expression in this study. CONCLUSIONS: REST was a prognostic factor in glioma, while REST4 was not. REST expression can be a predictor in evaluating the survival outcome of gliomas patients treated with RT+TMZ after surgery.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Glioma/therapy , Repressor Proteins/genetics , Gene Expression Profiling , Glioma/diagnosis , Glioma/genetics , Humans , Real-Time Polymerase Chain Reaction , Risk Factors
19.
Oncol Rep ; 39(2): 501-510, 2018 Feb.
Article En | MEDLINE | ID: mdl-29207176

Diffuse gliomas are the most common type of primary brain and central nervous system (CNS) tumors. Protein disulfide isomerases (PDIs) such as P4HB and PDIA3 act as molecular chaperones for reconstructing misfolded proteins, and are involved in endoplasmic reticulum stress and the unfolded protein response. The present study focused on the role of P4HB and PDIA3 in diffuse gliomas. Analysis of GEO and HPA data revealed that the expression levels of P4HB and PDIA3 were upregulated in glioma datasets. their increased expression was then validated in 99 glioma specimens compared with 11 non-tumor tissues. High expression of P4HB and PDIA3 was significantly correlated with high Ki-67 and a high frequency of the TP53 mutation. Kaplan-Meier survival curve and Cox regression analyses showed that glioma patients with high P4HB and PDIA3 expression had a poor survival outcome, P4HB and PDIA3 could be independent prognostic biomarkers for diffuse gliomas. In vitro, knockdown of PDIA3 suppressed cell proliferation, induced cell apoptosis, and decreased the migration of glioma cells. Furthermore, downregulation of P4HB and PDIA3 may contribute to improve the survival of patients who receive chemotherapy and radiotherapy. The data suggest that high expression of P4HB and PDIA3 plays an important role in glioma progression, and could predict the survival outcome and therapeutic response of glioma patients. Therefore, protein disulfide isomerases may be explored as prognostic biomarkers and therapeutic targets for diffuse gliomas.


Brain Neoplasms/pathology , Glioma/pathology , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Adult , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Humans , Ki-67 Antigen/genetics , Male , Middle Aged , Mutation , Neoplasm Grading , Prognosis , Survival Analysis , Treatment Outcome , Tumor Suppressor Protein p53/genetics , Up-Regulation
20.
Oncotarget ; 8(45): 78767-78780, 2017 Oct 03.
Article En | MEDLINE | ID: mdl-29108264

Diffuse gliomas are well known malignant brain tumors. Long non-coding RNAs (lncRNAs), a type of RNA transcript with more than 200 nucleotides, involve in tumorigenesis and development of various cancers. This study focused on identifying differentially expressed lncRNAs in gliomas based on gene expression profiling, and chose certain lncRNAs PVT1, CYTOR, HAR1A and MIAT, which changed with significant differences. Further analysis of TCGA and GEO data revealed that the expressions of PVT1 and CYTOR were up-regulated, while HAR1A and MIAT expressions were down-regulated in gliomas. Their expression patterns were validated in an independent cohort containing 98 glioma specimens and 12 non-tumor tissue controls. High expression of PVT1 and CYTOR as well as low HAR1A and MIAT expression were associated with high Ki-67 level and more TP53 mutation. Kaplan-Meier survival curve and Cox regression analyses showed that glioma patients with high PVT1 expression or low HAR1A expression had poor survival outcome, aberrantly expressed PVT1 and HAR1A could be the independent prognosis biomarkers for glioma patients. Moreover, down-regulation of PVT1 and up-regulation of HAR1A contributed to improve the survival of patients who received chemotherapy and radiotherapy. These results implied that these four lncRNAs might play important role in diffuse gliomas progression, particularly, PVT1 and HAR1A could be explored as promising biomarkers for diagnosis, prognosis and target therapy of diffuse gliomas.

...