Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Environ Sci Technol ; 58(12): 5394-5404, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38463002

Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.


Microalgae , Wastewater , Microalgae/metabolism , Denitrification , Nitrogen/metabolism , Bacteria/metabolism , Biomass
2.
Angew Chem Int Ed Engl ; 63(17): e202401434, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38425264

Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O-O bonds (1.47 Š→ 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600 mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.

3.
Environ Sci Technol ; 58(9): 4438-4449, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38330552

Dechlorination of chloropyridines can eliminate their detrimental environmental effects. However, traditional dechlorination technology cannot efficiently break the C-Cl bond of chloropyridines, which is restricted by the uncontrollable nonselective species. Hence, we propose the carbonate species-activated hydrogen peroxide (carbonate species/H2O2) process wherein the selective oxidant (peroxymonocarbonate ion, HCO4-) and selective reductant (hydroperoxide anion, HO2-) controllably coexist by manipulation of reaction pH. Taking 2-chloropyridine (Cl-Py) as an example, HCO4- first induces Cl-Py into pyridine N-oxidation intermediates, which then suffer from the nucleophilic dechlorination by HO2-. The obtained dechlorination efficiencies in the carbonate species/H2O2 process (32.5-84.5%) based on the cooperation of HCO4- and HO2- are significantly higher than those in the HO2--mediated sodium hydroxide/hydrogen peroxide process (0-43.8%). Theoretical calculations confirm that pyridine N-oxidation of Cl-Py can effectively lower the energy barrier of the dechlorination process. Moreover, the carbonate species/H2O2 process exhibits superior anti-interference performance and low electric energy consumption. Furthermore, Cl-Py is completely detoxified via the carbonate species/H2O2 process. More importantly, the carbonate species/H2O2 process is applicable for efficient dehalogenation of halogenated pyridines and pyrazines. This work offers a simple and useful strategy to enhance the dehalogenation efficiency of halogenated organics and sheds new insights into the application of the carbonate species/H2O2 process in practical environmental remediation.


Hydrogen Peroxide , Pyridines , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Carbonates
4.
Environ Sci Technol ; 58(9): 4145-4154, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38381076

The deactivation of selective catalytic reduction (SCR) catalysts caused by alkali metal poisoning remains an insurmountable challenge. In this study, we examined the impact of Na poisoning on the performance of Fe and Mo co-doped TiO2 (FeaMobTiOx) catalysts in the SCR reaction and revealed the related alkali resistance mechanism. On the obtained Fe1Mo2.6TiOx catalyst, the synergistic catalytic effect of uniformly dispersed FeOx and MoOx species leads to remarkable catalytic activity, with over 90% NO conversion achieved in a wide temperature range of 210-410 °C. During the Na poisoning process, Na ions predominantly adsorb on the MoOx species, which exhibit stronger alkali resistance, effectively safeguarding the FeOx species. This preferential adsorption minimizes the negative effect of Na poisoning on Fe1Mo2.6TiOx. Moreover, Na poisoning has little influence on the Eley-Rideal reaction pathway involving adsorbed NHx reacting with gaseous NOx. After Na poisoning, the Lewis acid sites were deteriorated, while the abundant Brønsted acid sites ensured sufficient NHx adsorption. As a benefit from the self-defense effects of active MoOx species for alkali capture, FeaMobTiOx exhibits exceptional alkali resistance in the SCR reaction. This research provides valuable insights for the design of highly efficient and alkali-resistant SCR catalysts.


Alkalies , Ammonia , Catalysis , Lewis Acids , Metals
5.
Nanoscale ; 16(12): 6010-6016, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38404219

The efficient and stable production of hydrogen (H2) through Pt-containing photocatalysts remains a great challenge. Herein, we develop an effective strategy to selectively and uniformly anchor Pt NPs (∼1.2 nm) on a covalent triazine-based framework photocatalyst via in situ derived bridging ligands. Compared to Pt/CTF-1, the obtained Pt/AT-CTF-1 exhibits a considerable photocatalytic H2 evolution rate of 562.9 µmol g-1 h-1 under visible light irradiation. Additionally, the strong interaction between the Pt NPs and in situ derived bridging ligands provides remarkable stability to Pt/AT-CTF-1. Experimental investigations and photo/chemical characterization reveal the synergy of the in situ derived bridging ligands in Pt/AT-CTF-1, which can selectively anchor the Pt NPs with homogeneous sizes and efficiently improve the transmission of charge carriers. This work provides a new perspective toward stabilizing ultrasmall nanoclusters and facilitating electron transfer in photocatalytic H2 evolution materials.

6.
Anal Biochem ; 672: 115159, 2023 07 01.
Article En | MEDLINE | ID: mdl-37072098

Objective To develop a kit for detecting human epidermal growth factor receptor 2 (HER-2) in the human body. Methods The HER-2 kit was evaluated based on an automated magnetic particle chemiluminescence platform. The kit was developed using the double antibody sandwich-complexation method. Results The kit showed a linear range of 0.01-800 ng/mL, with a linear R2 of >0.999. The limit of the blank was 0.0039 ng/mL, and the precision at 1.00 ng/mL was 9.4%. The recovery rate at 10.00 ng/mL was 97.81-101.81%. The negative serum reference range was 0-8.23 ng/mL. Conclusions The kit had a wide linear range, high accuracy, good precision, and high sensitivity, indicating that it has good application prospects.


Reagent Kits, Diagnostic , Receptor, ErbB-2 , Humans , Antibodies , Immunoassay/methods , Magnetics , Receptor, ErbB-2/blood
7.
Environ Sci Technol ; 57(12): 5034-5045, 2023 03 28.
Article En | MEDLINE | ID: mdl-36916663

Traditional methods cannot efficiently recover Cu from Cu(II)-EDTA wastewater and encounter the formation of secondary contaminants. In this study, an ozone/percarbonate (O3/SPC) process was proposed to efficiently decomplex Cu(II)-EDTA and simultaneously recover Cu. The results demonstrate that the O3/SPC process achieves 100% recovery of Cu with the corresponding kobs value of 0.103 min-1 compared with the typical •OH-based O3/H2O2 process (81.2%, 0.042 min-1). The carbonate radical anion (CO3•-) is generated from the O3/SPC process and carries out the targeted attack of amino groups of Cu(II)-EDTA for decarboxylation and deamination processes, resulting in successive cleavage of Cu-O and Cu-N bonds. In comparison, the •OH-based O3/H2O2 process is predominantly responsible for the breakage of Cu-O bonds via decarboxylation and formic acid removal. Moreover, the released Cu(II) can be transformed into stable copper precipitates by employing an endogenous precipitant (CO32-), accompanied by toxic-free byproducts in the O3/SPC process. More importantly, the O3/SPC process exhibits excellent metal recovery in the treatment of real copper electroplating wastewater and other metal-EDTA complexes. This study provides a promising technology and opens a new avenue for the efficient decomplexation of metal-organic complexes with simultaneous recovery of valuable metal resources.


Coordination Complexes , Ozone , Water Pollutants, Chemical , Wastewater , Copper , Edetic Acid/chemistry , Hydrogen Peroxide , Oxidation-Reduction , Carbonates , Water Pollutants, Chemical/chemistry
8.
Nanoscale ; 14(48): 18209-18216, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36468582

Non-noble materials with high efficiency and stability are essential for renewable energy applications. Herein, cobalt phosphide nanoparticles-decorated covalent organic frameworks (CTF-CoP) are synthesized via an in situ self-assembly method combined with the calcination process. In such a configuration, an intimate interaction between CoP and CTF matrix is gained through the Co-N chemical bonds, which not only significantly enhance the recyclability of CoP nanoparticles but also significantly improve the charge separation efficiency. Besides, the synergistically interactive Pδ--Coδ+-Nδ- states induced by the polarization effect of N-anchoring sites benefit for the adsorption and dissociation of water molecules in CTF-CoP. Consequently, CTF-CoP exhibits a higher photocatalytic hydrogen evolution rate (261.7 µmol g-1 h-1) and better durability as compared with the physically fixed CTF/CoP composite (64.8 µmol g-1 h-1) and even the noble metal-based CTF-Pt (191.3 µmol g-1 h-1). This work provides an avenue to construct highly stable non-noble photocatalyst for energy conversion and also emphasizes the potential of CTFs in constructing efficient heterojunctions.

9.
J Org Chem ; 87(23): 15820-15829, 2022 12 02.
Article En | MEDLINE | ID: mdl-36374155

An efficient copper-catalyzed radical hydrazono-phosphorylation of alkenes with hydrazine derivatives and diarylphosphine oxides is described. The reaction provides a general and convenient method toward the synthesis of diverse ß-hydrazonophosphine oxides in satisfactory yields. Based on conducted mechanistic experiments, a mechanism involving Ag-catalyzed oxidative generation of phosphinoyl radicals and subsequent addition to alkenes followed by Cu-assisted hydrazonation is proposed. Moreover, the practicability of the reaction is successfully demonstrated by its successful application on a gram scale.


Alkenes , Copper , Catalysis , Oxidation-Reduction , Oxides
10.
Angew Chem Int Ed Engl ; 61(50): e202214145, 2022 Dec 12.
Article En | MEDLINE | ID: mdl-36251617

Limited by the electrostatic interaction, the oxidation reaction of cations at the anode and the reduction reaction of anions at the cathode in the electrocatalytic system nearly cannot be achieved. This study proposes a novel strategy to overcome electrostatic interaction via strong complexation, realizing the electrocatalytic reduction of cyanide (CN- ) at the cathode and then converting the generated reduction products into nitrogen (N2 ) at the anode. Theoretical calculations and experimental results confirm that the polarization of the transition metal oxide cathodes under the electric field causes the strong chemisorption between CN- and cathode, inducing the preferential enrichment of CN- to the cathode. CN- is hydrogenated by atomic hydrogen at the cathode to methylamine/ammonia, which are further oxidized into N2 by free chlorine derived from the anode. This paper provides a new idea for realizing the unconventional and unrealizable reactions in the electrocatalytic system.

11.
J Org Chem ; 87(21): 14555-14564, 2022 Nov 04.
Article En | MEDLINE | ID: mdl-36264682

A copper-catalyzed stereoselective phosphono-hydrazonation of terminal alkynes with alkyl carbazates and diarylphosphine oxides is described. This methodology provides facile access to a variety of ß-hydrazonophosphine oxides in satisfactory yields. The reaction proceeds under mild conditions and exhibits good functional group tolerance. A mechanism featuring persulfate-mediated oxidative generation of phosphinoyl radicals and copper-assisted hydrazonation is proposed.

12.
Org Lett ; 24(32): 6083-6087, 2022 Aug 19.
Article En | MEDLINE | ID: mdl-35950907

A CuI-catalyzed cross-coupling of alkyl- and phosphorus-centered radicals for C(sp3)-P bond formation is introduced. Diacyl peroxides, generated in situ from aliphatic acids and H2O2, serve as a source for alkyl radicals and also an initiator for the generation of phosphorus radicals from H-P(O) compounds.

13.
Chemosphere ; 300: 134520, 2022 Aug.
Article En | MEDLINE | ID: mdl-35398067

The effective treatment of pesticide wastewater with high organic content, complex composition and high-toxicity has attracted enormous attention of researchers. This work proposes a new idea for removing the pesticide wastewater with simultaneous resource recovery, which is different from the traditional view of mineralization of pesticide wastewater via composite technology. This novel strategy involved a sequential three-step treatment: (a) acidic Ozonation process, to remove the venomous aromatic heterocyclic compounds; (b) hydrolysis and ozonation in alkaline conditions, enhancing the biodegradability of pesticide wastewater, mainly due to the dehalogenation, elimination of C=C bonds and production of low molecular-weight carboxylate anions; (c) the final step is anaerobic biological reactions. Based on the characterizations, this two-stage acidic-alkaline ozonation can efficiently degraded the virulence of pesticide wastewater and enhance its biodegradability from 0.08 to 0.32. The final anaerobic biochemical treatment can stably remove the residuals and convert the low molecular-weight organics into CH4, achieving the resource recovery. This work explored the pH-dependent of ozonized degradation of pesticide wastewater and gives a new perspective of wastewater treatment.


Ozone , Pesticides , Water Pollutants, Chemical , Anaerobiosis , Ozone/chemistry , Technology , Wastewater/chemistry , Water Pollutants, Chemical/analysis
14.
Chemosphere ; 291(Pt 2): 132817, 2022 Mar.
Article En | MEDLINE | ID: mdl-34752837

Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.


Diamond , Water Pollutants, Chemical , Boron , Electrodes , Electrolysis , Hydrogen Peroxide , Oxidation-Reduction , Ultraviolet Rays
15.
Water Res ; 209: 117890, 2021 Nov 24.
Article En | MEDLINE | ID: mdl-34856430

Traditional methods of cyanides' (CN-) mineralization cannot overcome the contradiction between the high alkalinity required for the inhibition of hydrogen cyanide evolution and the low alkalinity required for the efficient hydrolysis of cyanate (CNO-) intermediates. Thus, in this study, a novel Electro-Fenton system was constructed, in which the free cyanides released from ferricyanide photolysis can be efficiently mineralized by the synergy of •OH and •O2-. The complex bonds in ferricyanide (100 mL, 0.25 mM) were completely broken within 80 min under ultraviolet radiation, releasing free cyanides. Subsequently, in combination with the heterogeneous Electro-Fenton process, •OH and •O2- were simultaneously generated and 92.9% of free cyanides were transformed into NO3- within 120 min. No low-toxic CNO- intermediates were accumulated during the Electro-Fenton process. A new conversion mechanism was proposed that CN- was activated into electron-deficient cyanide radical (•CN) by •OH, and then the •CN intermediates reacted with •O2- via nucleophilic addition to quickly form NO3-, preventing the formation of CNO- and promoting the mineralization of cyanide. Furthermore, this new strategy was used to treat the actual cyanide residue eluent, achieving rapid recovery of irons and efficient mineralization of cyanides. In conclusion, this study proposes a new approach for the mineralization treatment of cyanide-containing wastewater.

16.
Angew Chem Int Ed Engl ; 60(40): 21751-21755, 2021 Sep 27.
Article En | MEDLINE | ID: mdl-34346139

Singlet oxygen (1 O2 ) is an excellent active species for the selective degradation of organic pollutions. However, it is difficult to achieve high efficiency and selectivity for the generation of 1 O2 . In this work, we develop a graphitic carbon nitride supported Fe single-atoms catalyst (Fe1 /CN) containing highly uniform Fe-N4 active sites with a high Fe loading of 11.2 wt %. The Fe1 /CN achieves generation of 100 % 1 O2 by activating peroxymonosulfate (PMS), which shows an ultrahigh p-chlorophenol degradation efficiency. Density functional theory calculations results demonstrate that in contrast to Co and Ni single-atom sites, the Fe-N4 sites in Fe1 /CN adsorb the terminal O of PMS, which can facilitate the oxidization of PMS to form SO5 .- , and thereafter efficiently generate 1 O2 with 100 % selectivity. In addition, the Fe1 /CN exhibits strong resistance to inorganic ions, natural organic matter, and pH value during the degradation of organic pollutants in the presence of PMS. This work develops a novel catalyst for the 100 % selective production of 1 O2 for highly selective and efficient degradation of pollutants.

17.
World J Gastroenterol ; 27(26): 4221-4235, 2021 Jul 14.
Article En | MEDLINE | ID: mdl-34326621

BACKGROUND: Ubiquitin-specific protease 15 (USP15) is an important member of the ubiquitin-specific protease family, the largest deubiquitinase subfamily, whose expression is dysregulated in many types of cancer. However, the biological function and the underlying mechanisms of USP15 in gastric cancer (GC) progression have not been elucidated. AIM: To explore the biological role and underlying mechanisms of USP15 in GC progression. METHODS: Bioinformatics databases and western blot analysis were utilized to determine the expression of USP15 in GC. Immunohistochemistry was performed to evaluate the correlation between USP15 expression and clinicopathological characteristics of patients with GC. A loss- and gain-of-function experiment was used to investigate the biological effects of USP15 on GC carcinogenesis. RNA sequencing, immunofluorescence, and western blotting were performed to explore the potential mechanism by which USP15 exerts its oncogenic functions. RESULTS: USP15 was up-regulated in GC tissue and cell lines. The expression level of USP15 was positively correlated with clinical characteristics (tumor size, depth of invasion, lymph node involvement, tumor-node-metastasis stage, perineural invasion, and vascular invasion), and was related to poor prognosis. USP15 knockdown significantly inhibited cell proliferation, invasion and epithelial-mesenchymal transition (EMT) of GC in vitro, while overexpression of USP15 promoted these processes. Knockdown of USP15 inhibited tumor growth in vivo. Mechanistically, RNA sequencing analysis showed that USP15 regulated the Wnt signaling pathway in GC. Western blotting confirmed that USP15 silencing led to significant down-regulation of ß-catenin and Wnt/ß-catenin downstream genes (c-myc and cyclin D1), while overexpression of USP15 yielded an opposite result and USP15 mutation had no change. Immunofluorescence indicated that USP15 promoted nuclear translocation of ß-catenin, suggesting activation of the Wnt/ß-catenin signaling pathway, which may be the critical mechanism promoting GC progression. Finally, rescue experiments showed that the effect of USP15 on gastric cancer progression was dependent on Wnt/ß-catenin pathway. CONCLUSION: USP15 promotes cell proliferation, invasion and EMT progression of GC via regulating the Wnt/ß-catenin pathway, which suggests that USP15 is a novel potential therapeutic target for GC.


Stomach Neoplasms , Wnt Signaling Pathway , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness/genetics , Stomach Neoplasms/genetics , Ubiquitin-Specific Proteases/genetics , beta Catenin/metabolism
18.
Sci Total Environ ; 797: 149201, 2021 Nov 25.
Article En | MEDLINE | ID: mdl-34303978

Microplastics (MPs) are the significant environmental factor for bioavailability of hydrophobic organic contaminants (HOCs) in aquatic environments. Nevertheless, the bioavailability of microplastic-associated HOCs remains unclear. In this research, the freely dissolved pyrene concentrations were kept stable with passive dosing devices, and the pyrene content in D. magna tissues as well as D. magna immobilization were analyzed to quantify bioavailability of pyrene (a representative HOC) associated with naturally-aged polystyrene (PS) MPs. Furthermore, the uptake mechanisms of pyrene associated with MPs of different sizes were explored by investigating the distribution of MPs in D. magna tissues with scanning electron microscopy. Especially, a new schematic model of bioavailability process was established. The results demonstrated that a part of pyrene associated with 0-1.5 µm MPs could directly cross cell membrane through endocytosis from intestine and exposure solutions to D. magna tissues except the 10-60 and 60-230 µm MPs. The bioavailability of microplastic-associated pyrene was ordered as 0-1.5 µm (20.0-21.6%) > 10-60 µm (10.7-13.8%) > 60-230 µm MPs (6.0-9.8%), which were essentially resulted from the difference in uptake mechanisms of pyrene associated with MPs of different sizes. This work suggests that the bioavailability of microplastic-associated HOCs should be considered when assessing water quality and environmental risk of HOCs in natural waters.


Daphnia , Water Pollutants, Chemical , Animals , Biological Availability , Microplastics , Plastics , Pyrenes/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
J Org Chem ; 86(13): 9067-9075, 2021 07 02.
Article En | MEDLINE | ID: mdl-34139836

A new approach for the preparation of carbamates via the copper-catalyzed cross-coupling reaction of amines with alkoxycarbonyl radicals generated from carbazates is described. This environmentally friendly protocol takes place under mild conditions and is compatible with a wide range of amines, including aromatic/aliphatic and primary/secondary substrates.


Amines , Copper , Carbamates , Catalysis , Hydrazines
20.
Org Lett ; 23(11): 4342-4347, 2021 Jun 04.
Article En | MEDLINE | ID: mdl-34029107

A copper-catalyzed difunctional cyano-, thiocyano-, and chlorophosphorylation reaction of alkynes with P(O)-H compounds and coupling partners (TBACN, TMSNCS, TMSCl) is described. The reaction introduces versatile groups (-P(O)R2 and -CN, -SCN, or -Cl) to form tri- and tetrasubstituted alkenyl phosphine oxides/phosphonates regio- and stereoselectively.

...