Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
ACS Nano ; 18(10): 7485-7495, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38415599

RESUMEN

Homovanillic acid (HVA) is a major dopamine metabolite, and blood HVA is considered as central nervous system (CNS) dopamine biomarker, which reflects the progression of dopamine-associated CNS diseases and the behavioral response to therapeutic drugs. However, facing blood various active substances interference, particularly structurally similar catecholamines and their metabolites, real-time and accurate monitoring of blood HVA remains a challenge. Herein, a highly selective implantable electrochemical fiber sensor based on a molecularly imprinted polymer is reported to accurately monitor HVA in vivo. The sensor exhibits high selectivity, with a response intensity to HVA 12.6 times greater than that of catecholamines and their metabolites, achieving 97.8% accuracy in vivo. The sensor injected into the rat caudal vein tracked the real-time changes of blood HVA, which paralleled the brain dopamine fluctuations and indicated the behavioral response to dopamine increase. This study provides a universal design strategy for improving the selectivity of implantable electrochemical sensors.


Asunto(s)
Catecolaminas , Dopamina , Ratas , Animales , Ácido Homovanílico/metabolismo , Encéfalo/metabolismo
3.
Adv Mater ; 36(6): e2307726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775103

RESUMEN

Diseases in pregnancy endanger millions of fetuses worldwide every year. The onset of these diseases can be early warned by the dynamic abnormalities of biochemicals in amniotic fluid, thus requiring real-time monitoring. However, when continuously penetrated by detection devices, the amnion is prone to loss of robustness and rupture, which is difficult to regenerate. Here, an interface-stabilized fiber sensor is presented for real-time monitoring of biochemical dynamics in amniotic fluid during pregnancy. The sensor is seamlessly integrated into the amnion through tissue adhesion, amniotic regeneration, and uniform stress distribution, posing no risk to the amniotic fluid environment. The sensor demonstrates a response performance of less than 0.3% fluctuation under complex dynamic conditions and an accuracy of more than 98% from the second to the third trimester. By applying it to early warning of diseases such as intrauterine hypoxia, intrauterine infection, and fetal growth restriction, fetal survival increases to 95% with timely intervention.


Asunto(s)
Amnios , Líquido Amniótico , Embarazo , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...