Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Int Immunopharmacol ; 139: 112666, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002521

RESUMEN

Immunotherapy has limited response rates in colorectal cancer (CRC) due to an immunosuppressive tumor microenvironment (TME). Combining transcriptome sequencing, clinical specimens, and functional experiments, we identified a unique group of CAF subpopulations (COX4I2 + ) with inhibited mitochondrial respiration and enhanced glycolysis. Through bioinformatics predictions and luciferase reporter assays, we determined that EBF1 can upstreamly regulate COX4I2 transcription. COX4I2 + CAFs functionally and phenotypically resemble myofibroblasts, are important for the formation of the fibrotic TME, and are capable of activating the M2 phenotype of macrophages. In vitro experiments demonstrated that COX4I2 + CAFs promote immunosuppressive TME by blocking CD8 + T cell infiltration and inducing CD8 + T cell dysfunction. Using multiple independent cohorts, we also found a strong correlation between the immunotherapy response rate of CRC patients and COX4I2 expression in their tumors. Our results identify a CAF subpopulation characterized by activation of the EBF1-COX4I2 axis, and this group of CAFs can be targeted to improve cancer immunotherapy outcomes.

2.
Transl Oncol ; 46: 102009, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833783

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide. Connexin is a transmembrane protein involved in gap junctions (GJs) formation. Our previous study found that connexin 37 (Cx37), encoded by gap junction protein alpha 4 (GJA4), expressed on fibroblasts acts as a promoter of CRC and is closely related to epithelial-mesenchymal transition (EMT) and tumor immune microenvironment. However, to date, the mechanism concerning the malignancy of GJA4 in tumor stroma has not been studied. METHODS: Hematoxylin-eosin (HE) and immunohistochemical (IHC) staining were used to validate the expression and localization of GJA4. Using single-cell analysis, enrichment analysis, spatial transcriptomics, immunofluorescence staining (IF), Sirius red staining, wound healing and transwell assays, western blotting (WB), Cell Counting Kit-8 (CCK8) assay and in vivo experiments, we investigated the possible mechanisms of GJA4 in promoting CRC. RESULTS: We discovered that in CRC, GJA4 on fibroblasts is involved in promoting fibroblast activation and promoting EMT through a fibroblast-dependent pathway. Furthermore, GJA4 may act synergistically with M2 macrophages to limit T cell infiltration by stimulating the formation of an immune-excluded desmoplasic barrier. Finally, we found a significantly correlation between GJA4 and pathological staging (P < 0.0001) or D2 dimer (R = 0.03, P < 0.05). CONCLUSION: We have identified GJA4 expressed on fibroblasts is actually a promoter of the tumor mesenchymal phenotype. Our findings suggest that the interaction between GJA4+ fibroblasts and M2 macrophages may be an effective target for enhancing tumor immunotherapy.

3.
J Transl Med ; 22(1): 580, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898490

RESUMEN

The importance of the immune microenvironment in poorly cohesive carcinoma (PCC) has been highlighted due to its limited response rate to conventional therapy and emerging treatment resistance. A combination of clinical cohorts, bioinformatics analyses, and functional/molecular experiments revealed that high infiltration of Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) + tumor-associated neutrophils (TANs) is a distinguishing feature of PCC patients. Upregulation of IFIT1 + TANs promote migration and invasion of gastric cancer (GC) cell lines (MKN45 and MKN74) and stimulates the growth of cell-derived xenograft models. Besides, by promoting macrophage secreted phosphoprotein 1 (SPP1) expression and facilitating cancer-associated fibroblast and endothelial cell recruitment and activation through TANs, IFIT1 promotes a mesenchymal phenotype, which is associated with a poor prognosis. Importantly, compared to non-PCC (NPCC), PCC tumors is more immunosuppressive. Mechanistically, IFIT1 can be stimulated by IFN-γ and contributes to the expression of Programmed Cell Death 1 Ligand (PDL1) in TANs. We demonstrated in mouse models that IFIT1 + PDL1 + TANs can induce acquired resistance to anti-PD-1 immunotherapy, which may be responsible for the difficulty of PCC patients to benefit from immunotherapy. This work highlights the role of IFIT1 + TANs in mediating the remodeling of the tumor immune microenvironment and immunotherapeutic resistance and introduces IFIT1 + TANs as a promising target for precision therapy of PCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neutrófilos , Proteínas de Unión al ARN , Humanos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Microambiente Tumoral/inmunología , Femenino , Antígeno B7-H1/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/inmunología , Masculino , Ratones , Resistencia a Antineoplásicos , Movimiento Celular , Tolerancia Inmunológica , Terapia de Inmunosupresión , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Ratones Desnudos , Inmunoterapia , Persona de Mediana Edad
4.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849852

RESUMEN

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Asunto(s)
Fibroblastos Asociados al Cáncer , Comunicación Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Animales , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/genética , Uniones Comunicantes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Análisis Espacio-Temporal , Uniones Estrechas/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo
5.
PeerJ ; 12: e17220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618568

RESUMEN

Background: Single nucleotide polymorphisms (SNPs), as the most abundant form of DNA variation in the human genome, contribute to age-related cataracts (ARC) development. Apoptosis of lens epithelial cells (LECs) is closely related to ARC formation. Insulin-like growth factor 1 (IGF1) contributes to cell apoptosis regulation. Moreover, IGF1 was indicated to exhibit a close association with cataract formation. Afterward, an investigation was conducted to examine the correlation between polymorphisms in IGF1 and the susceptibility to ARC. Methods: The present investigation was a case-control study. Venous blood draws were collected from the participants for DNA genotyping. Lens capsule samples were collected to detect mRNA and apoptosis. TaqMan RT-PCR was used to detect IGF1 polymorphism genotypes and qRT PCR was used to detect IGF1 mRNA levels in LECs. LEC apoptosis was evaluated through flow cytometry. The chi-square test was used to compare differences between ARCs and controls of each SNP. Results: We found that the G allele frequency in the IGF1-rs6218 was higher in the ARCs than in the controls. Furthermore, it was observed that the rs6218 GG genotype exhibited a positive correlation to elevated levels of IGF1 mRNA in LECs. The IGF1 mRNA in the LECs and the apoptosis of LECs in nuclear type of ARCs (ARNC) was higher than the controls. Conclusion: The susceptibility to ARC was related to IGF1-rs6218 polymorphism, and this polymorphism is associated with IGF1 expression at the mRNA level. Moreover, apoptosis in LECs of ARNCs was found to be increased.


Asunto(s)
Catarata , Factor I del Crecimiento Similar a la Insulina , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple/genética , Catarata/genética , ARN Mensajero/genética , ADN
6.
Org Lett ; 26(8): 1595-1600, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373166

RESUMEN

Selective transformations at the more sterically hindered sites of organic molecules represent a frontier in the ability to precisely modify molecules. The lack of effective synthetic methods stands in stark contrast to the large number of encumbered sites encountered in molecules of interest. Here, we demonstrate that 1,2-bis(boronates) undergo selective alkynylation and alkenylation at the more sterically hindered C-B bond. Our preliminary mechanistic studies disclosed that this reaction can proceed through two convergent pathways involving direct coupling of sterically encumbered site versus 1,2-boron migratory coupling. Notably, this method facilitated convenient access to alkenyl and alkynyl boron products, which can be diversified by an array of transformations.

7.
J Pers Soc Psychol ; 126(1): 1-4, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38386371

RESUMEN

The commencement of a new editorial tenure within the Journal of Personality and Social Psychology: Attitudes and Social Cognition (JPSP: ASC) provides an opportunity for reflection regarding the journal's core mission. The editors recognize that social psychology is at a crossroads due to competing demands that may have led to reduced submissions and posed challenges for previous editors in filling the journal's pages. Now, JPSP: ASC has been allotted more pages to allow for growth during this editorial term. Although this is desirable for the field, it adds to the pressure of identifying articles for publication given the difficulties filling the pages during previous editorial terms. As the premier outlet of social psychology since 1965, JPSP: ASC will retain its centrality if we increase submissions and publish more articles, while continuing to strive to communicate methodologically trustworthy, intellectually stimulating, and socially relevant research, in a responsible fashion. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Trastornos de la Personalidad , Personalidad , Humanos , Psicología Social
8.
Biomol Biomed ; 24(2): 387-394, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37838927

RESUMEN

Retinal vein occlusion (RVO) ranks as the second most prevalent retinal vascular disease, following diabetic retinopathy. Neutrophil extracellular traps (NETs) play an important role in vascular diseases. This study aimed to elucidate the relationship between NETs and RVO, and to discern the potential role of deoxyribonuclease I (DNase I) in the prevention and treatment of RVO through the modulation of NETs. We analyzed circulating NETs biomarkers, namely cell-free DNA (cf-DNA), myeloperoxidase (MPO)-DNA, and neutrophil elastase (NE), in 30 RVO patients and 30 healthy individuals. We established an RVO mouse model using a retinal laser, and the mice were categorized into two groups: the DNase I group and the control group. Retinal images were taken at predetermined time points, and the state of the retinal vessels was assessed. Both tissue and blood samples were harvested for analysis of NETs expression through methods such as western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA). Our finding indicate an increase in circulating NETs biomarkers in human and mouse RVO cases, while also verifying the presence of NETs in the retinal thrombus of the RVO model. Both in vitro and in vivo tests revealed that DNase I attenuated NETs formation. Moreover, DNase I injections led to diminished NETs biomarker levels and a reduced duration of the thrombus after the RVO model establishment. Consequently, DNase I, a well-established modulator of NETs formation, might exhibit protective properties in the prevention and treatment of RVO.


Asunto(s)
Trampas Extracelulares , Oclusión de la Vena Retiniana , Animales , Humanos , Ratones , Biomarcadores/metabolismo , Desoxirribonucleasa I , ADN , Trampas Extracelulares/metabolismo , Oclusión de la Vena Retiniana/metabolismo
9.
J Ethnopharmacol ; 319(Pt 3): 117342, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879505

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sargentodoxa cuneata (Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson, DXT)-Patrinia villosa(Patrinia villosa (Thunb.) Dufr, BJC) constitutes a commonly employed herb pair in Chinese medicine for colorectal cancer (CRC) treatment. Modern pharmacological investigations have revealed the anticancer activities of both Sargentodoxa cuneata and Patrinia villosa. Nevertheless, comprehensive studies are required to discern the specific antitumor active ingredients and mechanism of action when these two herbs are used in combination. AIM OF THE STUDY: Through the integration of network pharmacology, molecular docking techniques, experimental assays, and bioinformatics analysis, our study aims to forecast the active ingredients, potential targets, and molecular mechanisms underlying the therapeutic efficacy of this herb pair against CRC. MATERIALS AND METHODS: Plant names (1, Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson; 2, Patrinia villosa (Thunb.) Dufr.) have been verified through WorldFloraOnline (www.worldFloraonline.org) and MPNs (http://mpns.kew.org). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were utilized for screening the active ingredients of the herb pair. The PharmMapper database was employed to predict the target proteins for each active ingredient. CRC-related targets were obtained from the Genecards database, Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). Common targets were identified by intersecting the target proteins of all active ingredients with CRC-related targets. Protein-protein interactions (PPI) for the common target proteins were constructed using the String database and Cytoscape 3.9.1 software. Network topology analysis facilitated the identification of core targets. These core targets were subjected to enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Metascape database. Molecular docking was performed using Discovery Studio 2019 to investigate the interactions between the active ingredients and core target proteins. The core targets were validated through bioinformatics analysis using GEPIA, HPA, and the cBioPortal database. Finally, a series of experiments were conducted to further validate the results in vitro. RESULT: A total of 15 active ingredients and 255 herb targets were identified, resulting in 66 common targets in conjunction with 6113 disease targets. The PPI analysis highlighted AKT1, EGFR, CASP3, SRC, and ESR1 as core targets. KEGG enrichment analysis indicated significant enrichment in the PI3K-AKT signaling pathway, a pathway associated with cancer. Molecular docking experiments confirmed favorable interactions between dihydroguaiaretic acid and the core target proteins (AKT1, EGFR, CASP3, and ESR1). Bioinformatics analysis revealed differential expression of EGFR and CASP3 in normal and CRC tissues. Cellular experiments further verified that dihydroguaiaretic acid induces apoptosis in colorectal cancer cells through the PI3K-AKT signaling pathway. CONCLUSION: Our network pharmacology study has elucidated that the Sargentodoxa cuneata-Patrinia villosa herb pair exerts the negative regulation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the induction of apoptosis in colorectal cancer cells. This research has predicted and validated the active ingredients, potential targets, and molecular mechanisms of Sargentodoxa cuneata-Patrinia villosa in the treatment of CRC, providing scientific evidence for the use of traditional Chinese medicine in managing CRC.


Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Patrinia , Humanos , Caspasa 3 , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Simulación del Acoplamiento Molecular , Serina-Treonina Quinasas TOR , Transducción de Señal , Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB
10.
Sci Rep ; 13(1): 21317, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044354

RESUMEN

Hepatocellular carcinoma (HCC) is the most widespread histological form of primary liver cancer, and it faces great diagnostic and therapeutic difficulties owing to its tumor diversity. Herein, we aim to establish a unique prognostic molecular subtype (MST) and based on this to find potential therapeutic targets to develop new immunotherapeutic strategies. Using calcium channel molecules expression-based consensus clustering, we screened 371 HCC patients from The Cancer Genome Atlas to screen for possible MSTs. We distinguished core differential gene modules between varying MSTs, and Tumor Immune Dysfunction and Exclusion scores were employed for the reliable assessment of HCC patient immunotherapeutic response rate. Immunohistochemistry and Immunofluorescence staining were used for validation of predicted immunotherapy outcomes and underlying biological mechanisms, respectively. We identified two MSTs with different clinical characteristics and prognoses. Based on the significant differences between the two MSTs, we further identified Follistatin-like 3 (FSTL3) as a potential indicator of immunotherapy resistance and validated this result in our own cohort. Finally, we found that FSTL3 is predominantly expressed in HCC stromal components and that it is a factor in enhancing fibroblast-M2 macrophage signaling crosstalk, the function of which is relevant to the pathogenesis of HCC. The presence of two MSTs associated with the calcium channel phenotype in HCC patients may provide promising directions for overcoming immunotherapy resistance in HCC, and the promotion of FSTL3 expressed in stromal components for HCC hyperfibrosis may be responsible for the poor response rate to immunotherapy in Cluster 2 (C2) patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Canales de Calcio , Carcinoma Hepatocelular/genética , Análisis por Conglomerados , Inmunoterapia , Neoplasias Hepáticas/genética
11.
BMC Ophthalmol ; 23(1): 514, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110879

RESUMEN

BACKGROUND: In the present study, we explored the role of N6-methyladenosine (m6A) modification of long non-coding RNAs (lncRNAs) and its association with ferroptosis in lens epithelium cells (LECs) of age-related cataract (ARC). METHODS: Through m6A RNA immunoprecipitation sequencing (m6A-RIP-seq) and RNA sequencing (RNA-seq), we identified m6A mediated and differentially expressed lncRNAs (dme-lncRNAs) in ARC patients. Based on bioinformatics analysis, we selected critical dme-lncRNAs and pathways associated with ARC formation to reveal their potential molecular mechanisms. The downregulation of glutathione peroxidase 4 (GPX4), a key component of ferroptosis, was confirmed by real-time RT-PCR (RT-qPCR) and Western blotting in age-related cortical cataract (ARCC) samples. Transmission electron microscopy was used to assess the change in mitochondrial in LECs. RESULTS: The analysis revealed a total of 11,193 m6A peaks within lncRNAs, among which 7043 were enriched and 4150 were depleted. Among those, lncRNA ENST00000586817(upstream of the GPX4 gene) was not only significantly upregulated in the LECs of ARCC but also potentially augmented the expression of GPX4 through a cis mechanism. The expression of m6A-modified lncRNA (ENST00000586817) was correlated with that of GPX4 and was downregulated in ARC patients. The TEM results indicated significant mitochondrial changes in ARCC samples. GPX4 downregulation enhanced LEC ferroptosis and decreased viability via RSL3 in SRA01/04 cells. CONCLUSIONS: Our results provide insight into the potential function of m6A-modified lncRNAs. M6A-modified lncRNA ENST00000586817 might regulate the expression of GPX4 by a cis mechanism and be implicated in ferroptosis in ARCs.


Asunto(s)
Catarata , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , ARN Largo no Codificante , Humanos , Catarata/genética , Catarata/metabolismo , Epitelio/metabolismo , Ferroptosis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , ARN Largo no Codificante/genética
12.
Materials (Basel) ; 16(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834747

RESUMEN

This paper mainly analyzes the typical thermodynamic response (thermal history, thermal strain and residual stress) in a conventional continuous-wave (CW) laser during Directed Energy Deposition (DED). The influence of process parameters (laser power and scanning speed) on the temperature gradient in the heat-affected zone, thermal strain and residual stress are studied, and the corresponding relationship are established. The results show that a reduction in residual stress can be obtained by decreasing the temperature gradient. However, the method of reducing the temperature gradient by changing process parameters leads to low forming quality and low density. A pulse-wave laser (PW) is proposed to actively control the residual stress of the deposited sample. This laser mode can reduce not only the temperature gradient in the process of DED but also the in situ release of thermal stress, correspondingly greatly reducing the residual stress.

13.
Sci Rep ; 13(1): 17518, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845352

RESUMEN

We examine how cultural distance between sojourners' country of origin and their host country influences their engagement in intercultural exchange upon return. One might expect intercultural exchange to be much harder between culturally-distant countries than culturally-close ones, given that the former vary more in norms or expected behaviors from one's home country. Our novel theorizing, however, leads to precisely the opposite expectations. In particular, we hypothesized that cultural distance between the repatriates' home and host countries would be positively associated with being inspired by the host culture. In turn, this heightened inspiration would predict an increased sharing of knowledge about the host culture upon returning home (intercultural exchange). We combined measurement-of-mediation (Study 1) and experimental-causal-chain (Studies 2-3) approaches to test and confirm these hypotheses in three large samples of repatriates. We first examined whether cultural distance predicted greater intercultural exchange via repatriates' heightened inspiration (Study 1). We then tested the individual links in this postulated causal chain. In Study 2, a quasi-experiment, we examined the causal path from cultural distance to inspiration. In Study 3, we experimentally manipulated inspiration to test its causal effect on intercultural exchange. The findings advance theory and application around multicultural experience and intercultural exchange.

14.
Org Lett ; 25(42): 7656-7660, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37823578

RESUMEN

A novel copper-catalyzed cross-coupling reaction of sulfinamides and aryl boronic acids is developed. The reaction is highly chemoselective and stereospecific, which allows mild synthesis of optically pure sulfoximines with broad scope and functional group tolerance. The utility of this method is demonstrated by the asymmetric synthesis of pharmaceutical intermediates.

15.
Gels ; 9(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37754358

RESUMEN

Ocular alkali burns recruit neutrophils and triggers neutrophil extracellular trap (NET)-neovascularization cascade effects that limit ocular surface reconstruction and functional repair. However, effective inhibition of the release of neutrophil extracellular traps after a corneal chemical injury, coordination of intrinsic immunity with corneal repair, and exploration of more effective and non-invasive drug-delivery modes are still urgently needed. Using an in vitro coculture system, we found that an alkaline environment stimulates neutrophils to release NETs, which can be regulated by deoxyribonuclease I (DNase I). Inspired by this, we loaded DNase I, which effectively regulates NETs, onto chitosan nanoparticles and combined them with silk fibroin to construct a composite hydrogel that can sustainably regulate NETs. The hydrogel reduced neutrophil extracellular trap production by 50% and neovascularization by approximately 70% through sustained DNase I release after a corneal alkali burn. The complex hydrogel promotes ocular surface reconstruction by modulating the intrinsic immune-cascade neovascularization effect, providing a new research basis for the construction of nanobiomaterials that modulate pathological neovascularization.

16.
Nat Commun ; 14(1): 5168, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620301

RESUMEN

Sulfonyl and sulfonimidoyl fluorides are versatile substrates in organic synthesis and medicinal chemistry. However, they have been exclusively used as S(VI)+ electrophiles for defluorinative ligations. Converting sulfonyl and sulfonimidoyl fluorides to S(VI) radicals is challenging and underexplored due to the strong bond dissociation energy of SVI-F and high reduction potentials, but once achieved would enable dramatically expanded synthetic utility and downstream applications. In this report, we disclose a general platform to address this issue through cooperative organosuperbase activation and photoredox catalysis. Vinyl sulfones and sulfoximines are obtained with excellent E selectivity under mild conditions by coupling reactions with alkenes. The synthetic utility of this method in the preparation of functional polymers and dyes is also demonstrated.

17.
Angew Chem Int Ed Engl ; 62(32): e202307447, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37316685

RESUMEN

Asymmetric cross-couplings based on 1,2-carbon migration from B-ate complexes have been developed efficiently to access valuable organoboronates. However, enantioselective reactions triggered by 1,2-boron shift have remained to be unaddressed synthetic challenge. Here, Ir-catalyzed asymmetric allylic alkylation enabled by 1,2-boron shift was developed. In this reaction, we disclosed that excellent enantioselectivities were achieved through an interesting dynamic kinetic resolution (DKR) process of allylic carbonates at the elevated temperature. Notably, the highly valuable (bis-boryl)alkenes have enabled an array of diversifications to access versatile molecules. Extensive experimental and computational studies were conducted to elucidate the reaction mechanism of DKR process and clarify the origin of excellent enantioselectivities.

18.
Front Endocrinol (Lausanne) ; 14: 1161521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152942

RESUMEN

The prevalence of obesity and diabetes mellitus (DM) has been consistently increasing worldwide. Sharing powerful genetic and environmental features in their pathogenesis, obesity amplifies the impact of genetic susceptibility and environmental factors on DM. The ectopic expansion of adipose tissue and excessive accumulation of certain nutrients and metabolites sabotage the metabolic balance via insulin resistance, dysfunctional autophagy, and microbiome-gut-brain axis, further exacerbating the dysregulation of immunometabolism through low-grade systemic inflammation, leading to an accelerated loss of functional ß-cells and gradual elevation of blood glucose. Given these intricate connections, most available treatments of obesity and type 2 DM (T2DM) have a mutual effect on each other. For example, anti-obesity drugs can be anti-diabetic to some extent, and some anti-diabetic medicines, in contrast, have been shown to increase body weight, such as insulin. Meanwhile, surgical procedures, especially bariatric surgery, are more effective for both obesity and T2DM. Besides guaranteeing the availability and accessibility of all the available diagnostic and therapeutic tools, more clinical and experimental investigations on the pathogenesis of these two diseases are warranted to improve the efficacy and safety of the available and newly developed treatments.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Obesidad , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/terapia , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/terapia , Resistencia a la Insulina , Insulina/metabolismo , Resultado del Tratamiento
19.
Life (Basel) ; 13(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240851

RESUMEN

Water quality is directly linked to drinking water safety for millions of people receiving the water. The Danjiangkou Reservoir is the main water source for the Middle Route of the South-to-North Water Diversion Project (MR-SNWDP), located in the vicinity of Henan and Hubei provinces in China. Aquatic microorganisms are key indicators of biologically assessing and monitoring the water quality of the reservoir as they are sensitive to environmental and water quality changes. This study aimed to investigate the spatiotemporal variations in bacterioplankton communities during wet (April) and dry (October) seasons at eight monitoring points in Hanku reservoir and five monitoring points in Danku reservoir. Each time point had three replicates, labeled as wet season Hanku (WH), wet season Danku (WD), dry season Hanku (DH), and dry season Danku (DD) of Danjiangkou Reservoir in 2021. High-throughput sequencing (Illumina PE250) of the 16S rRNA gene was performed, and alpha (ACE and Shannon) and beta (PCoA and NDMS) diversity indices were analyzed. The results showed that the dry season (DH and DD) had more diverse bacterioplankton communities compared to the wet season (WH and WD). Proteobacteria, Actinobacteria, and Firmicutes were the most abundant phyla, and Acinetobacter, Exiguobacterium, and Planomicrobium were abundant in the wet season, while polynucleobacter was abundant in the dry season. The functional prediction of metabolic pathways revealed six major functions including carbohydrate metabolism, membrane transport, amino acid metabolism, signal transduction, and energy metabolism. Redundancy analysis showed that environmental parameters greatly affected bacterioplankton diversity during the dry season compared to the wet season. The findings suggest that seasonality has a significant impact on bacterioplankton communities, and the dry season has more diverse communities influenced by environmental parameters. Further, the relatively high abundance of certain bacteria such as Acinetobacter deteriorated the water quality during the wet season compared to the dry season. Our findings have significant implications for water resource management in China, and other countries facing similar challenges. However, further investigations are required to elucidate the role of environmental parameters in influencing bacterioplankton diversity in order to devise potential strategies for improving water quality management in the reservoir.

20.
Toxics ; 11(4)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37112580

RESUMEN

Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA