Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Adv Mater ; : e2404446, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38837518

Superstructures with complex hierarchical spatial configurations exhibit broader structural depth than single hierarchical structures and the associated broader application prospects. However, current preparation methods are greatly constrained by cumbersome steps and harsh conditions. Here, for the first time, a concise and efficient thermally responsive dynamic synthesis strategy for the preparation of multidimensional complex superstructures within soluble covalent organic networks (SCONs) with tunable morphology from 0D hollow supraparticles to 2D films is presented. Mechanism study reveals the thermally responsive dynamic "cleavage-remodeling" characteristics of SCONs, synthesized based on the unique bilayer structure of (2.2)paracyclophane, and the temperature control facilitates the process from reversible solubility to reorganization and construction of superstructures. Specifically, during the process, the oil-water-emulsion two-phase interface can be generated through droplet jetting, leading to the preparation of 0D hollow supraparticles and other bowl-like complex superstructures with high yield. Additionally, by modulating the volatility and solubility of exogenous solvents, defect-free 2D films are prepared relying on an air-liquid interface. Expanded experiments further confirm the generalizability and scalability of the proposed dynamic "cleavage-remodeling" strategy. Research on the enrichment mechanism of guest iodine highlights the superior kinetic mass transfer performance of superstructural products compared to single-hierarchical materials.

2.
Nat Commun ; 15(1): 3896, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719899

As one of the most attractive methods for the synthesis of ordered hierarchically porous crystalline materials, the soft-template method has not appeared in covalent organic frameworks (COFs) due to the incompatibility of surfactant self-assembly and guided crystallization process of COF precursors in the organic phase. Herein, we connect the soft templates to the COF backbone through ionic bonds, avoiding their crystallization incompatibilities, thus introducing an additional ordered arrangement of soft templates into the anionic microporous COFs. The ion exchange method is used to remove the templates while maintaining the high crystallinity of COFs, resulting in the construction of COFs with ordered hierarchically micropores/mesopores, herein named OHMMCOFs (OHMMCOF-1 and OHMMCOF-2). OHMMCOFs exhibit significantly enhanced functional group accessibility and faster mass transfer rate. The extrinsic porosity can be adjusted by changing the template length, concentration, and ratio. Cationic guanidine-based COFs (OHMMCOF-3) are also constructed using the same method, which verifies the scalability of the soft-template strategy. This work provides a path for constructing ordered and tunable extrinsic porosity in COFs with greatly improved mass transfer efficiency and functional group accessibility.

3.
ACS Macro Lett ; 12(9): 1237-1243, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37638609

The majority of COFs synthesized using current methods exist as insoluble powders, which is unfavorable for processing and molding and greatly limits their practical applications. The syntheses of solution-processable or soluble COFs are challenging but hold immense promise and potential. Herein, for the first time, we have developed a simple and high-efficiency solvothermal-treated unit exchange approach to convert insoluble COF powders into smaller, highly soluble COFs via a hydrogen bond-assisted strategy. Due to the enhanced backbone-solvent hydrogen-bonding interactions between COFs and protic solvents and the effect of grain size reduction, the COFs after unit exchange can be easily dissolved in various protic solvents while remaining as insoluble powders in nonprotic solvents. The obtained soluble COFs exhibit remarkable fluorescence quenching upon detection of iodine in aqueous solution, with a detection limit as low as 75 nM, and can be fabricated into membranes for the efficient treatment of iodine-contaminated solutions.

4.
Small ; 19(43): e2303775, 2023 Oct.
Article En | MEDLINE | ID: mdl-37357162

The compatibility of crystallinity, stability, and functionality in covalent organic frameworks (COFs) is challenging but significant in reticular chemistry and materials science. Herein, it is presented for the first time a strategy to synthesize directly amino-functionalized COF with stable benzodiimidazole linkage by regioselective one-step cyclization and aromatization. Bandrowski's base with two types of amino groups is used as a unique monomer, providing not only construction sites for the material framework through specific region-selective reaction, but also amino active sites for functionality, which is usually difficult to achieve directly in COF synthesis because amino groups are the participants in COF bonding. In addition, the aromatic benzodiimidazole rings and the large conjugated system of the product effectively improve the crystallinity and stability, so that the as-prepared BBCOF remains unchanged in both acid and base solutions, which is obviously better than the conventional imine-linked COF. Impressively, the significantly enhanced conjugation degree by the benzodiimidazole structure also endows BBCOF with an efficient photocatalytic reduction of uranyl ion, with removal rate as high as 96.6% in single-ion system and 95% in multi-ion system. This study is of great importance to the design and synthesis of functional COFs with a commendable trade-off among crystallinity, stability, and functionality.

5.
ACS Appl Mater Interfaces ; 15(13): 16975-16983, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36943036

Developing crystalline porous materials with highly efficient CO2 selective adsorption capacity is one of the key challenges to carbon capture and storage (CCS). In current studies, much more attention has been paid to the crystalline and porous properties of crystalline porous materials for CCS, while the defects, which are unavoidable and ubiquitous, are relatively neglected. Herein, for the first time, we propose a monomer-symmetry regulation strategy for directional defect release to achieve in situ functionalization of COFs while exposing uniformly distributed defect-aldehyde groups as functionalization sites for selective CO2 capture. The regulated defective COFs possess high crystallinity, good structural stability, and a large number of organized and functionalized aldehyde sites, which exhibit one of the highest selective separation values of all COF sorbing materials in CO2/N2 selective adsorption (128.9 cm3/g at 273 K and 1 bar, selectivity: 45.8 from IAST). This work not only provides a new strategy for defect regulation and in situ functionalization of COFs but also provides a valuable approach in the design and preparation of new adsorbents for CO2 adsorption and CO2/N2 selective separation.

6.
Angew Chem Int Ed Engl ; 60(22): 12396-12405, 2021 May 25.
Article En | MEDLINE | ID: mdl-33682274

Compared to the current mainstream rigid covalent organic frameworks (COFs) linked by imine bonds, flexible COFs have certain advantages of elasticity and self-adaptability, but their construction and application are greatly limited by the complexity in synthesis and difficulty in obtaining regular structure. Herein, we reported for the first time a series of flexible amine-linked COFs with high crystallinity synthesized by formic acid with unique catalytic and reductive bifunctional properties, rather than acetic acid, the most common catalyst for COF synthesis. The reaction mechanism was demonstrated to be a synchronous in situ reduction during the formation of imine bond. The flexibilities of the products endow them with accommodative adaptability to guest molecules, thus increasing the adsorption capacities for nitrogen and iodine by 27 % and 22 %, respectively. Impressively, a novel concept of flexibilization degree was proposed firstly, which provides an effective approach to rationally measure the flexibility of COFs.

7.
ACS Appl Mater Interfaces ; 13(1): 1127-1134, 2021 Jan 13.
Article En | MEDLINE | ID: mdl-33371663

Among various fission products generated in nuclear reactors, xenon and krypton are two important fission gases with high flow, diffusivity, and radioactivity. Moreover, xenon isolated from these products is an expensive industrial resource with wide applications in medicine and lighting, which makes the development of efficient methods for separation of xenon/krypton significant. However, it is usually difficult for xenon/krypton to be adsorbed by chemical adsorbents due to their inert gas properties, and sub-nanoporous adsorbents proven to be workable for the separation of xenon/krypton are still hard to prepare and regulate the pore size. Herein, we report two novel sub-nanoporous covalent organic frameworks (COFs), which were applied to the sieving of xenon/krypton for the first time. The sub-nanoporous COFs were synthesized via aldehyde-amine polycondensation reactions and the subsequent pore size regulation and homogenization process by using a facile, operational, and efficient multiple-site alkylation strategy. Impressively, the as-prepared sub-nanoporous COFs realized the efficient adsorption and sieving of xenon/krypton owing to their slightly larger pore sizes (∼7 Å) than the dynamic diameters of xenon/krypton and their larger pore volumes. The maximum adsorption capacity for xenon is up to 85.6 cm3/g, and the xenon/krypton selectivity can reach to 9.7. Moreover, the as-prepared COFs possess good γ-ray irradiation stability, which endows them with great potentials for the sieving of radioactive xenon/krypton in the practical application. The multiple-site alkylation strategy proposed in this study provides a valuable approach for the pore construction and control of the porous materials, especially the sub-nanoporous adsorption materials.

8.
J Hazard Mater ; 401: 123802, 2021 Jan 05.
Article En | MEDLINE | ID: mdl-33113739

Design and preparation of a kind of pore-free adsorbent with abundant active sites is favorable for fast separation of uranium. Here, a two-dimensional olefin-linked conjugated organic polymer was prepared via the Knoevenagel condensation reaction. The product owns good stability and excellent fluorescence property due to the fully conjugated skeleton. Moreover, owning to the high content of N atom, it shows excellent performance in adsorption and separation of uranium, and more importantly, it is constructed with nearly pore-free structure because of the irregular staggered stacking, which makes it exhibit fast adsorption behavior towards uranium. These results confirm the feasibility of pore-free material for fast adsorption.

...