Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1308360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439985

RESUMEN

Introduction: A better understanding of xylem hydraulic characteristics in trees is critical to elucidate the mechanisms of forest decline and tree mortality from water deficit. As well as temperate forests and forests growing in arid regions, subtropical and tropical forests are also predicted to experience an increased frequency and intensity of climate change-induced drought in the near future. Methods: In this study, 1-year-old Cunninghamia lanceolata seedlings (a typical subtropical species in southern China) were selected for a continuous controlled drought pot experiment of 45 days duration. The experimental treatments were non-drought (control), light drought, moderate drought and severe drought stress, which were 80%, 60%, 50%, and 40%, respectively of soil field maximum moisture capacity. Results: The hydraulic conductivity, specific conductivity and water potential of roots, stems, and branches of C. lanceolata all decreased with the prolonging of drought in the different drought intensities. The relative decrease in these hydraulic values were greater in roots than in stems and branches, indicating that roots are more sensitive to drought. Root tracheid diameters normally reduce to ensure security of water transport with prolonged drought, whilst the tracheid diameters of stems and branches expand initially to ensure water transport and then decrease to reduce the risk of embolism with continuing drought duration. The pit membrane diameter of roots, stems and branches generally increased to different extents during the 15-45 days drought duration, which is conducive to enhanced radial water transport ability. The tracheid density and pit density of stems generally decreased during drought stress, which decreased water transport efficiency and increased embolism occurrence. Correlation analysis indicated that anatomical plasticity greatly influenced the hydraulic properties, whilst the relationships varied among different organs. In roots, tracheid diameter decreased and tracheid density increased to enhance water transport security; stems and branches may increase tracheid diameter and pit membrane diameter to increase hydraulic conductivity ability, but may increase the occurrence of xylem embolism. Discussion: In summary, under drought stress, the xylem anatomical characteristics of C. lanceolata organs were highly plastic to regulate water transport vertically and radially to maintain the trade-off between hydraulic conductivity efficiency and safety.

2.
Plants (Basel) ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447038

RESUMEN

The Chinese fir Cunninghamia lanceolata (Lamb.) Hook. is an important timber conifer species in China. Much has been studied about Chinese fir, but the distribution of non-structural carbohydrates (NSCs) among different organs (needles, branch, stem, and roots) under drought stress remains poorly understood. In this study, we used one-year-old C. lanceolata plantlets to evaluate the effects of simulated drought under four water regimes, i.e., adequate water or control, light drought, moderate drought, and severe drought stress corresponding to 80%, 60%, 50%, and 40%, respectively of soil field maximum capacity on various NSCs in the needles, branch, stem and roots. The degree and duration of drought stress had significant effects on fructose, glucose, sucrose, soluble sugar, starch, and NSC content in various organs (p < 0.05). Fructose content increased in stem xylem, stem phloem, and leaves. Glucose and sucrose content declined in stem and branch xylem under light drought stress and moderate drought stress, and increased under severe drought stress conditions. Soluble sugars content declined, and starch content increased in leaf and branch phloem, but the latter could not compensate for soluble sugar consumption in the whole plant, and therefore, total NSCs decreased. Correlation analysis showed that a significant positive correlation existed in the soluble sugar content between leaves and roots, and between xylem and phloem in the stems and branches. Chinese fir appears to have different NSCs distribution strategies in response to drought stress, viz., allocating more soluble sugars to fine roots and increasing starch content in the needles, as well as ensuring osmosis to prevent xylem embolism. Our study may broaden the understanding of the various mechanisms that Chinese fir and other plants have to enhance their tolerance to drought stress.

3.
Plants (Basel) ; 12(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299119

RESUMEN

Mineral accumulation in plants under drought stress is essential for drought tolerance. The distribution, survival, and growth of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), an evergreen conifer, can be affected by climate change, particularly seasonal precipitation and drought. Hence, we designed a drought pot experiment, using 1-year-old Chinese fir plantlets, to evaluate drought effects under simulated mild drought, moderate drought, and severe drought, which corresponds to 60%, 50%, and 40% of soil field maximum moisture capacity, respectively. A treatment of 80% of soil field maximum moisture capacity was used as control. Effects of drought stress on mineral uptake, accumulation, and distribution in Chinese fir organs were determined under different drought stress regimes for 0-45 days. Severe drought stress significantly increased phosphorous (P) and potassium (K) uptake at 15, 30 and 45 days, respectively, within fine (diameter < 2 mm), moderate (diameter 2-5 mm), and large (diameter 5-10 mm) roots. Drought stress decreased magnesium (Mg) and manganese (Mn) uptake by fine roots and increased iron (Fe) uptake in fine and moderate roots but decreased Fe uptake in large roots. Severe drought stress increased P, K, calcium (Ca), Fe, sodium (Na), and aluminum (Al) accumulation in leaves after 45 days and increased Mg and Mn accumulation after 15 days. In stems, severe drought stress increased P, K, Ca, Fe, and Al in the phloem, and P, K, Mg, Na, and Al in the xylem. In branches, P, K, Ca, Fe, and Al concentrations increased in the phloem, and P, Mg, and Mn concentrations increased in the xylem under severe drought stress. Taken together, plants develop strategies to alleviate the adverse effects of drought stress, such as promoting the accumulation of P and K in most organs, regulating minerals concentration in the phloem and xylem, to prevent the occurrence of xylem embolism. The important roles of minerals in response to drought stress should be further evaluated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA