Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Neurosci ; 17: 1213410, 2023.
Article En | MEDLINE | ID: mdl-37599992

Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the leading monogenic cause of autism and intellectual disability. For years, several efforts have been made to develop an effective therapeutic approach to phenotypically rescue patients from the disorder, with some even advancing to late phases of clinical trials. Unfortunately, none of these attempts have completely succeeded, bringing urgency to further expand and refocus research on FXS therapeutics. FXS arises at early stages of postnatal development due to the mutation and transcriptional silencing of the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1) and consequent loss of the Fragile X Messenger Ribonucleoprotein (FMRP) expression. Importantly, FMRP expression is critical for the normal adult nervous system function, particularly during specific windows of embryogenic and early postnatal development. Cellular proliferation, migration, morphology, axonal guidance, synapse formation, and in general, neuronal network establishment and maturation are abnormally regulated in FXS, underlying the cognitive and behavioral phenotypes of the disorder. In this review, we highlight the relevance of therapeutically intervening during critical time points of development, such as early postnatal periods in infants and young children and discuss past and current clinical trials in FXS and their potential to specifically target those periods. We also discuss potential benefits, limitations, and disadvantages of these pharmacological tools based on preclinical and clinical research.

2.
Sleep ; 46(4)2023 04 12.
Article En | MEDLINE | ID: mdl-36718043

The mechanisms by which the genotype interacts with nutrition during development to contribute to the variation of complex behaviors and brain morphology of adults are not well understood. Here we use the Drosophila Genetic Reference Panel to identify genes and pathways underlying these interactions in sleep behavior and mushroom body morphology. We show that early-life nutritional restriction effects on sleep behavior and brain morphology depends on the genotype. We mapped genes associated with sleep sensitivity to early-life nutrition, which were enriched for protein-protein interactions responsible for translation, endocytosis regulation, ubiquitination, lipid metabolism, and neural development. By manipulating the expression of candidate genes in the mushroom bodies (MBs) and all neurons, we confirm that genes regulating neural development, translation and insulin signaling contribute to the variable response of sleep and brain morphology to early-life nutrition. We show that the interaction between differential expression of candidate genes with nutritional restriction in early life resides in the MBs or other neurons and that these effects are sex-specific. Natural variations in genes that control the systemic response to nutrition and brain development and function interact with early-life nutrition in different types of neurons to contribute to the variation of brain morphology and adult sleep behavior.


Drosophila melanogaster , Drosophila , Animals , Male , Female , Drosophila melanogaster/genetics , Drosophila/genetics , Brain/physiology , Sleep/physiology , Genes, Developmental
3.
Genes (Basel) ; 10(2)2019 02 06.
Article En | MEDLINE | ID: mdl-30736350

We studied and compared the nucleolar expression or nucleoli from specific bivalents in spermatocytes of the standard Mus musculus domesticus 2n=40, of Robertsonian (Rb) homozygotes 2n = 24 and heterozygotes 2n = 32. We analyzed 200 nuclear microspreads of each specific nucleolar chromosome and spermatocyte karyotype, using FISH to identify specific nucleolar bivalents, immunofluorescence for both fibrillarin of the nucleolus and the synaptonemal complex of the bivalents, and DAPI for heterochromatin. There was nucleolar expression in all the chromosomal conditions studied. By specific nucleolar bivalent, the quantitative relative nucleolar expression was higher in the bivalent 12 than in its derivatives, lower in the bivalent 15 than in its derivatives and higher in the bivalent 16 than its Rb derivatives. In the interactions between non-homologous chromosomal domains, the nucleolar bivalents were preferentially associated through pericentromeric heterochromatin with other bivalents of similar morphology and sometimes with other nucleolar bivalents. We suggest that the nucleolar expression in Rb nucleolar chromosomes is modified as a consequence of different localization of ribosomal genes (NOR) in the Rb chromosomes, its proximity to heterochromatin and its associations with chromosomes of the same morphology.


Cell Nucleolus/genetics , Spermatocytes/metabolism , Translocation, Genetic , Animals , Chromosomes/genetics , Chromosomes/metabolism , Homozygote , Male , Mice , Spermatocytes/cytology
...