Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Front Pharmacol ; 14: 1178190, 2023.
Article En | MEDLINE | ID: mdl-38027033

Introduction: There is a steady increase in colorectal cancer (CRC) incidences worldwide; at diagnosis, about 20 percent of cases show metastases. The transforming growth factor-beta (TGF-ß) signaling pathway is one of the critical pathways that influence the expression of cadherins allowing the epithelial-to-mesenchymal transition (EMT), which is involved in the progression of the normal colorectal epithelium to adenoma and metastatic carcinoma. The current study aimed to investigate the impact of a novel coordination complex of platinum (salicylaldiminato) PT(II) complex with dimethyl propylene linkage (PT-complex) on TGF-ß and EMT markers involved in the invasion and migration of the human HT-29 and SW620 CRC cell lines. Methods: Functional study and wound healing assay showed PT-complex significantly reduced cell motility and the migration and invasion of CRC cell lines compared to the untreated control. Western blot performed in the presence and absence of TGF-ß demonstrated that PT-complex significantly regulated the TGF-ß-mediated altered expressions of EMT markers. Results and Discussion: PT-complex attenuated the migration and invasion by upregulating the protein expression of EMT-suppressing factor E-cadherin and suppressing EMT-inducing factors such as N-Cadherin and Vimentin. Moreover, PT-complex significantly suppressed the activation of SMAD3 in both CRC cell lines. Further, the microarray data analysis revealed differential expression of genes related to invasion and migration. In conclusion, besides displaying antiproliferative activity, the PT complex can decrease the metastasis of CRC cell lines by modulating TGF-ß-regulated EMT markers. These findings provide new insight into TGF-ß/SMAD signaling as the molecular mechanism involved in the antitumoral properties of novel PT-complex.

2.
Medicina (Kaunas) ; 58(10)2022 Oct 13.
Article En | MEDLINE | ID: mdl-36295599

Checkpoint programmed death-1 (PD-1) has been identified as an immunosuppressive molecule implicated in the immune evasion of transformed cells. It is highly expressed in tumor cells in order to evade host immunosurveillance. In this study, we aimed to assess the association between single nucleotide polymorphisms (SNP) of PD-1 and the risk of colorectal cancer (CRC) in the Saudi population. For this case-control study, the TaqMan assay method was used for genotyping three SNPs in the PD-1 gene in 100 CRC patients and 100 healthy controls. Associations were estimated using odds ratios (ORs) and 95% confidence intervals (95% CIs) for multiple inheritance models (codominant, dominant, recessive, over-dominant, and log-additive). Moreover, PD-1 gene expression levels were evaluated using quantitative real-time PCR in colon cancer tissue and adjacent colon tissues. We found that the PD-1 rs10204525 A allele was associated with an increased risk of developing CRC (OR = 2.35; p = 0.00657). In addition, the PD-1 rs10204525 AA homozygote genotype was associated with a high risk of developing CRC in the codominant (OR = 21.65; p = 0.0014), recessive (OR = 10.97; p = 0.0015), and additive (OR = 1.98; p = 0.012) models. A weak protective effect was found for the rs2227981 GG genotype (OR = 2.52; p = 0.034), and no significant association was found between the rs2227982 and CRC. Haplotype analysis showed that the rs10204525, rs2227981, rs2227982 A-A-G haplotype was associated with a significantly increased risk of CRC (OR = 6.79; p =0.031).


Colorectal Neoplasms , Genetic Predisposition to Disease , Humans , Asian People , Case-Control Studies , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genetic Predisposition to Disease/genetics , Genotype , Polymorphism, Single Nucleotide/genetics , Programmed Cell Death 1 Receptor/genetics , Saudi Arabia/epidemiology
3.
Int J Oncol ; 60(3)2022 03.
Article En | MEDLINE | ID: mdl-35059735

With >1.85 million cases and 850,000 deaths annually, colorectal cancer (CRC) is the third most common cancer detected globally. CRC is an aggressive malignancy with metastasis and, in spite of advances in improved treatment regimen, distant disease failure rates remain disappointingly high. Mucin­like 1 (MUCL1) is a small glycoprotein highly expressed mainly in breast cancer. The involvement of the MUCL1 protein in CRC progression and the underlying mechanism have been largely unknown. The aim of the present study was to investigate the MUCL1 expression profile and its functional significance in CRC. The Cancer Genome Atlas dataset revealed that MUCL1 expression was higher in colorectal tumor compared with normal tissues. MUCL1 was also revealed to be expressed in human CRC cell lines. The results demonstrated that MUCL1 promoted cell proliferation and colony formation, confirming its oncogenic potential. Silencing MUCL1 with short interfering RNA inhibited the protein expression of Bcl2 family proteins, such as Bcl2 and BclxL. Targeting MUCL1 resulted in significant inhibition in cell invasive and migratory behavior of HT­29 and SW620 cells. In addition, the expression of E­cadherin increased whereas the expression of vimentin decreased in MUCL1­silenced cells, confirming inhibition of epithelial­mesenchymal transition (EMT) process. Thus, it was revealed that MUCL1 plays a notable role in cell invasion and migration by inhibiting EMT in CRC. Mechanistically, MUCL1 drives ß­catenin activation by Ser­552 phosphorylation, nuclear accumulation and transcriptional activation. Targeting MUCL1 increases the drug sensitivity of CRC cells towards irinotecan. These findings thus demonstrated that MUCL1 acts as a modifier of other pathways that play an important role in CRC progression and MUCL1 was identified as a potential target for CRC therapeutics.


Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Irinotecan/metabolism , Mucins/pharmacology , beta Catenin/drug effects , Cell Line/drug effects , Cell Line/physiology , Cell Movement/genetics , Colorectal Neoplasms/physiopathology , Humans , Irinotecan/pharmacology , Mucins/metabolism
4.
Obes Surg ; 30(5): 1736-1744, 2020 May.
Article En | MEDLINE | ID: mdl-31950316

BACKGROUND: Many patients considering bariatric surgery will obtain medical information through the Internet. The type and quality of information patients access may vary significantly by geographic region. METHODS: Searches were performed using commercial search engines in both the United States of America (USA) and United Arab Emirates (UAE) using search terms "bariatric surgery" and "weight loss surgery." Quality was assessed using the scoring systems previously published by DISCERN (United Kingdom (UK)), the Journal of the American Medical Association Benchmark (JAMA; USA), and Expanded Ensuring Quality Information for Patients (EQIP) (UK). RESULTS: Website types were more evenly distributed in UAE, though physician websites were also the most common (n = 25, 25%). Within the USA, most websites analyzed were from physicians (n = 32, 32%), followed by academic sources (n = 26, 26%). Academic websites were the highest average quality in the USA (p < .00001). The overall mean DISCERN scores for all websites in the UAE group and US group had no statistically significance differences (p = .950). The overall mean JAMA Benchmark for all websites in the UAE group and USA had no statistically significance differences (p = 0.202). There were no major differences between the USA and UAE in Expanded EQIP scores. CONCLUSIONS: The overall quality of information regarding bariatric surgery is poor to fair in both the USA and UAE. Additionally, there are differences in the types of sites retrieved by the most commonly used search engines in each region. The lack of high-quality, evidence-based, information regarding bariatric surgery online is a potential target to improve public education.


Bariatric Surgery , Obesity, Morbid , Humans , Internet , Obesity, Morbid/surgery , United Arab Emirates , United Kingdom
5.
Onco Targets Ther ; 11: 3313-3322, 2018.
Article En | MEDLINE | ID: mdl-29892198

INTRODUCTION: Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rate. Developments in screening, prevention, biomarker, personalized therapies and chemotherapy have improved detection and treatment. However, despite these advances, many patients with advanced metastatic tumors still succumb to the disease. New anticancer agents are needed for treating advanced stage CRC as most of the deaths occur due to cancer metastasis. A recently developed novel sulfonamide derivative 4-((2-(4-(dimethylamino) phenyl)quinazolin-4-yl)amino)benzenesulfonamide (3D) has shown potent antitumor effect; however, the mechanism underlying the antitumor effect remains unknown. MATERIALS AND METHODS: 3D-mediated inhibition on cell viability was evaluated by MTT and real-time cell proliferation was measured by xCelligence RTDP instrument. Western blotting was used to measure pro-apoptotic, anti-apoptotic proteins and JAK2-STAT3 phosphorylation. Flow cytometry was used to measure ROS production and apoptosis. RESULTS: Our study revealed that 3D treatment significantly reduced the viability of human CRC cells HT-29 and SW620. Furthermore, 3D treatment induced the generation of reactive oxygen species (ROS) in human CRC cells. Confirming our observation, N-acetylcysteine significantly inhibited apoptosis. This is further evidenced by the induction of p53 and Bax; release of cytochrome c; activation of caspase-9, caspase-7 and caspase-3; and cleavage of PARP in 3D-treated cells. This compound was found to have a significant effect on the inhibition of antiapoptotic proteins Bcl2 and BclxL. The results further demonstrate that 3D inhibits JAK2-STAT3 pathway by decreasing the constitutive and IL-6-induced phosphorylation of STAT3. 3D also decreases STAT3 target genes such as cyclin D1 and survivin. Furthermore, a combination study of 3D with doxorubicin (Dox) also showed more potent effects than single treatment of Dox in the inhibition of cell viability. CONCLUSION: Taken together, these findings indicate that 3D induces ROS-mediated apoptosis and inhibits JAK2-STAT3 signaling in CRC.

6.
BMC Cancer ; 17(1): 4, 2017 01 03.
Article En | MEDLINE | ID: mdl-28049506

BACKGROUND: Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown. METHODS: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29. RESULTS: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFß-induced phosphorylation of Smad2 and Samd3. CONCLUSIONS: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.


Amides/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Colorectal Neoplasms/pathology , Reactive Oxygen Species/metabolism , Sulfanilic Acids/chemistry , Caspase 3/metabolism , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Cytochromes c/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Tumor Cells, Cultured , Wound Healing/drug effects
7.
PLoS One ; 11(6): e0155236, 2016.
Article En | MEDLINE | ID: mdl-27309378

BACKGROUND: Vitamin D, causally implicated in bone diseases and human malignancies, exerts its effects through binding to the vitamin D receptor (VDR). VDR is a transcription factor modulating the expression of several genes in different pathways. Genetic variants in the VDR gene have been associated with several cancers in different population including colorectal cancer. OBJECTIVE: To assess the association of VDR gene polymorphisms in relation with colorectal cancer (CRC) in a Saudi population. METHODS: The polymorphisms of VDR gene (BsmI, FokI, ApaI and TaqI) were analyzed by the polymerase chain reaction amplification of segments of interest followed by Sanger sequencing. One hundred diagnosed CRC patients and 100 healthy control subjects that were age and gender matched were recruited. RESULTS: We did not observe significant association of any of the four VDR polymorphisms with colorectal cancer risk in the overall analysis. Although not statistically significant, the AA genotype of BsmI conferred about two-fold protection against CRCs compared to the GG genotype. Stratification of the study subjects based on age and gender suggests statistically significant association of CRC with the 'C' allele of ApaI in patients >57 years of age at disease diagnosis and BsmI polymorphism in females. In addition, statistically significant differences were observed for the genotypic distributions of VDR-BsmI, ApaI and TaqI SNPs between Saudi Arabian population and several of the International HapMap project populations. CONCLUSION: Despite the absence of correlation of the examined VDR polymorphisms with CRCs in the combined analysis, ApaI and BsmI loci are statistically significantly associated with CRC in elderly and female patients, respectively. These findings need further validation in larger cohorts prior to utilizing these SNPs as potential screening markers for colorectal cancers in Saudi population.


Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Adult , Aged , Aged, 80 and over , Alleles , Case-Control Studies , Colorectal Neoplasms/pathology , Deoxyribonucleases, Type II Site-Specific/chemistry , Female , Gene Expression , Gene Frequency , Humans , Linkage Disequilibrium , Male , Middle Aged , Saudi Arabia , Sequence Analysis, DNA
8.
Asian J Surg ; 37(2): 86-92, 2014 Apr.
Article En | MEDLINE | ID: mdl-24060212

BACKGROUND: The proinflammatory cytokines and growth-promoting factor are essential components of the wound healing process. We hypothesized that under healthy conditions, faster healing of intestinal anastomotic wound is due to an early upregulation of proinflammatory cytokines, cytokine-induced neutrophil chemoattractant-1 (CINC-1) that is followed by a quicker upregulation of homeostatic chemokine, monocyte chemoattractant protein-1 (MCP-1) and late upregulation of transforming growth factor (TGF-ß). METHODS: We characterized the time course of CINC-1, MCP-1 and TGF-ß release at four wounds (skin, muscle, small bowel, and colonic anastomosis) after surgery on 38 juvenile male Sprague Dawley rats. The tissue samples of each site were harvested at 0 (control), 1, 3, 5, 7 and 14 days postoperatively (n = 6-8/group) and analyzed by ELISA kits for CINC-1, MCP-1 and TGF-ß. RESULTS: CINC-1 expression peaked earlier in muscle and colonic wounds when compared to skin and small bowel. MCP-1 levels were elevated early in skin and muscle wounds, but later expression of MCP-1 was shown in colonic wounds. TGF-ß levels were unchanged in all wound sites. CONCLUSION: An earlier peak in CINC-1 levels and later expression of MCP-1 were seen in colonic wounds, but no significant increase in TGF-ß levels was observed. These findings support the early healing process in intestinal anastomotic wounds.


Chemokine CCL2/physiology , Interleukin-8/physiology , Up-Regulation , Wound Healing/physiology , Animals , Colon/injuries , Male , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/physiology
...