Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37999360

RESUMEN

Water scarcity is a significant concern, particularly in arid regions, due to the rapid growth in population, industrialization, and climate change. Seawater desalination has emerged as a conventional and reliable solution for obtaining potable water. However, conventional membrane-based seawater desalination has drawbacks, such as high energy consumption resulting from a high-pressure requirement, as well as operational challenges like membrane fouling and high costs. To overcome these limitations, it is crucial to enhance the performance of membranes by increasing their efficiency, selectivity, and reducing energy consumption and footprint. Adsorptive membranes, which integrate adsorption and membrane technologies, offer a promising approach to address the drawbacks of standalone membranes. By incorporating specific materials into the membrane matrix, composite membranes have demonstrated improved permeability, selectivity, and reduced pressure requirements, all while maintaining effective pollutant rejection. Researchers have explored different adsorbents, including emerging materials such as ionic liquids (ILs), deep eutectic solvents (DESs), and graphene oxide (GO), for embedding into membranes and utilizing them in various applications. This paper aims to discuss the existing challenges in the desalination process and focus on how these materials can help overcome these challenges. It will also provide a comprehensive review of studies that have reported the successful incorporation of ILs, DESs, and GO into membranes to fabricate adsorptive membranes for desalination. Additionally, the paper will highlight both the current and anticipated challenges in this field, as well as present prospects, and provide recommendations for further advancements.

2.
Enzyme Res ; 2014: 159809, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25328684

RESUMEN

This work proposes the purification of an active and efficient enzyme, extracellular poly(3-hydroxybutyrate) (PHB)-depolymerase, suitable for industrial applications. This is achieved by the application of an easy, fast, and cheap route, skipping the chromatography step. Chromatography with one or two columns is a common step in the purification procedure, which however renders the isolation of the enzyme a time consuming and an expensive process. A strain of the fungus Penicillium pinophilum (ATCC 9644) is used for the isolation of extracellular PHB-depolymerase. The molecular weight of the purified enzyme is about 35 kDa and is estimated by gel electrophoresis (SDS-PAGE, 12% polyacrylamide). The enzymatic activity of the isolated enzyme is determined to be 3.56-fold similar to that found by other researchers that have used chromatography for the isolation. The as-isolated enzyme disintegrates the poly(3-hydroxybutyrate) (PHB) films successfully, as it is demonstrated by the biodegradation test results provided here.

3.
Langmuir ; 24(19): 11225-32, 2008 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-18720965

RESUMEN

Hydrophilic silica (SiO2) nanoparticles were dispersed in solutions of poly(methyl methacrylate) (PMMA) and in solutions of a commercial poly(alkyl siloxane) (Rhodorsil 224), and the suspensions were sprayed on glass surfaces. The effect of the particle concentration on the hydrophobic character of PMMA-SiO2 and Rhodorsil-SiO2 films was investigated and showed the following: (i) Static contact angles (theta s), measured on surfaces that were prepared from dilute dispersions (particle concentration <1% w/v), increase rapidly with particle concentration and reach maximum values (154 and 164 degrees for PMMA-SiO2 and siloxane-SiO2, respectively). Further increases in particle concentration do not have any effect on theta s. (ii) The effect of particle concentration on the contact angle hysteresis (thetaAlpha - thetaR) is more complicated: as the particle concentration increases, we first notice an increase in hysteresis, which then decreases and finally becomes constant at elevated particle concentrations. The lowest thetaAlpha - thetaR values were 5 degrees for PMMA-SiO2 and 3 degrees for siloxane-SiO2, respectively. (iii) SEM and AFM images show that a two-length-scale hierarchical structure is formed on the surface of the superhydrophobic films. It is demonstrated that superhydrophobicity can be achieved using various hydrophilic nanoparticles (alumina and tin oxide nanoparticles were successfully tested) and that the substrate has almost no effect on the hydrophobic character of the applied coatings, which were produced on silicon, concrete, aluminum, silk, wood, marble, and of course glass. The results are discussed in light of Wenzel and Cassie-Baxter models.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Dióxido de Silicio/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Nanopartículas/química , Nanopartículas/ultraestructura , Polímeros/química , Polimetil Metacrilato/química
4.
Acta Biomater ; 4(3): 756-65, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18294944

RESUMEN

Polymer nanocomposites, based on poly(e-caprolactone) (PCL) and organically modified montmorillonite, were prepared by the solution intercalation technique. The thermal stability of the prepared materials was analyzed by thermogravimetric analysis. Investigation of their mechanical properties revealed that incorporation of the high aspect ratio montmorillonite sheets into the matrix significantly enhanced the polymer stiffness without sacrificing its ductility. Fibrous membranes of neat and nanocomposite PCL were fabricated by electrospinning. The effect of the applied voltage, the solution concentration and the clay content of the nanocomposite materials on the final fibrous structure was investigated. The results showed that the introduction of the inorganic filler and the increase in the applied voltage from 7.5 to 15 kV facilitated the formation of fine fibers with fewer bead defects. The presence of nanoclay resulted in narrower fiber size distributions, although the mean fiber diameter was not significantly altered. The increase in the solution concentration led to the formation of more uniform fiber structures and to a slight increase in the mean fiber diameter. Furthermore, the electrospinning process affected significantly the structure of the nanocomposite material by increasing the interlayer spacing of the inorganic mineral.


Asunto(s)
Bentonita/química , Materiales Biocompatibles/química , Nanocompuestos/química , Poliésteres/química , Temperatura , Membranas Artificiales , Soluciones , Resistencia a la Tracción , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA