Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Cells ; 12(7)2023 03 23.
Article En | MEDLINE | ID: mdl-37048058

Tauopathies are neurodegenerative disorders involving the accumulation of tau isoforms in cell subpopulations such as astrocytes. The origins of the 3R and 4R isoforms of tau that accumulate in astrocytes remain unclear. Extracellular vesicles (EVs) were isolated from primary neurons overexpressing 1N3R or 1N4R tau or from human brain extracts (progressive supranuclear palsy or Pick disease patients or controls) and characterized (electron microscopy, nanoparticle tracking analysis (NTA), proteomics). After the isolated EVs were added to primary astrocytes or human iPSC-derived astrocytes, tau transfer and mitochondrial system function were evaluated (ELISA, immunofluorescence, MitoTracker staining). We demonstrated that neurons in which 3R or 4R tau accumulated had the capacity to transfer tau to astrocytes and that EVs were essential for the propagation of both isoforms of tau. Treatment with tau-containing EVs disrupted the astrocytic mitochondrial system, altering mitochondrial morphology, dynamics, and redox state. Although similar levels of 3R and 4R tau were transferred, 3R tau-containing EVs were significantly more damaging to astrocytes than 4R tau-containing EVs. Moreover, EVs isolated from the brain fluid of patients with different tauopathies affected mitochondrial function in astrocytes derived from human iPSCs. Our data indicate that tau pathology spreads to surrounding astrocytes via EVs-mediated transfer and modifies their function.


Tauopathies , tau Proteins , Humans , tau Proteins/metabolism , Astrocytes/metabolism , Tauopathies/pathology , Brain/metabolism , Protein Isoforms/metabolism
2.
J Vis Exp ; (177)2021 11 16.
Article En | MEDLINE | ID: mdl-34866623

While much attention has been given to mitochondrial alterations at the neuronal level, recent evidence demonstrates that mitochondrial dynamics and function in astrocytes are implicated in cognition. This article describes the method for time-lapse imaging of astrocyte cultures equipped with a mitochondrial biosensor: MitoTimer. MitoTimer is a powerful and unique tool to assess mitochondrial dynamics, mobility, morphology, biogenesis, and redox state. Here, the different procedures for culture, image acquisitions, and subsequent mitochondrial analysis are presented.


Astrocytes , Mitochondria , Astrocytes/metabolism , Cells, Cultured , Diagnostic Imaging , Mitochondrial Dynamics , Neurons/physiology
3.
Front Cell Neurosci ; 14: 25, 2020.
Article En | MEDLINE | ID: mdl-32153365

Selective serotonin reuptake inhibitors (SSRIs) are frequently used to treat depression during pregnancy. Various concerns have been raised about the possible effects of these drugs on fetal development. Current developmental neurotoxicity (DNT) testing conducted in rodents is expensive, time-consuming, and does not necessarily represent human pathophysiology. A human, in vitro testing battery to cover key events of brain development, could potentially overcome these challenges. In this study, we assess the DNT of paroxetine-a widely used SSRI which has shown contradictory evidence regarding effects on human brain development using a versatile, organotypic human induced pluripotent stem cell (iPSC)-derived brain model (BrainSpheres). At therapeutic blood concentrations, which lie between 20 and 60 ng/ml, Paroxetine led to an 80% decrease in the expression of synaptic markers, a 60% decrease in neurite outgrowth and a 40-75% decrease in the overall oligodendrocyte cell population, compared to controls. These results were consistently shown in two different iPSC lines and indicate that relevant therapeutic concentrations of Paroxetine induce brain cell development abnormalities which could lead to adverse effects.

4.
Neurobiol Aging ; 51: 83-96, 2017 03.
Article En | MEDLINE | ID: mdl-28056358

The impact of human adult ischemia-tolerant mesenchymal stem cells (hMSCs) and factors (stem cell factors) on cerebral amyloid beta (Aß) pathology was investigated in a mouse model of Alzheimer's disease (AD). To this end, hMSCs were administered intravenously to APPPS1 transgenic mice that normally develop cerebral Aß. Quantitative reverse transcriptase polymerase chain reaction biodistribution revealed that intravenously delivered hMSCs were readily detected in APPPS1 brains 1 hour following administration, and dropped to negligible levels after 1 week. Notably, intravenously injected hMSCs that migrated to the brain region were localized in the cerebrovasculature, but they also could be observed in the brain parenchyma particularly in the hippocampus, as revealed by immunohistochemistry. A single hMSC injection markedly reduced soluble cerebral Aß levels in APPPS1 mice after 1 week, although increasing several Aß-degrading enzymes and modulating a panel of cerebral cytokines, suggesting an amyloid-degrading and anti-inflammatory impact of hMSCs. Furthermore, 10 weeks of hMSC treatment significantly reduced cerebral Aß plaques and neuroinflammation in APPPS1 mice, without increasing cerebral amyloid angiopathy or microhemorrhages. Notably, a repeated intranasal delivery of soluble factors secreted by hMSCs in culture, in the absence of intravenous hMSC injection, was also sufficient to diminish cerebral amyloidosis in the mice. In conclusion, this preclinical study strongly underlines that cerebral amyloidosis is amenable to therapeutic intervention based on peripheral applications of hMSC or hMSC factors, paving the way for a novel therapy for Aß amyloidosis and associated pathologies observed in AD.


Alzheimer Disease/etiology , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Brain/metabolism , Mesenchymal Stem Cell Transplantation/methods , Molecular Targeted Therapy , Animals , Cell Movement , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Hippocampus/metabolism , Humans , Inflammation Mediators/metabolism , Injections, Intravenous , Mice, Transgenic
...