Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
ACS Med Chem Lett ; 14(5): 557-565, 2023 May 11.
Article En | MEDLINE | ID: mdl-37197469

Life is constructed primarily using a toolbox of 20 canonical amino acids-relying upon these building blocks for the assembly of proteins and peptides that regulate nearly every cellular task, including cell structure, function, and maintenance. While Nature continues to be a source of inspiration for drug discovery, medicinal chemists are not beholden to only 20 canonical amino acids and have begun to explore non-canonical amino acids (ncAAs) for the construction of designer peptides with improved drug-like properties. However, as our toolbox of ncAAs expands, drug hunters are encountering new challenges in approaching the iterative peptide design-make-test-analyze cycle with a seemingly boundless set of building blocks. This Microperspective focuses on new technologies that are accelerating ncAA interrogation in peptide drug discovery (including HELM notation, late-stage functionalization, and biocatalysis) while shedding light on areas where further investment could not only accelerate the discovery of new medicines but also improve downstream development.

2.
J Am Chem Soc ; 145(10): 5684-5695, 2023 03 15.
Article En | MEDLINE | ID: mdl-36853652

A deaminative reductive coupling of amino acid pyridinium salts with aryl bromides has been developed to enable efficient synthesis of noncanonical amino acids and diversification of peptides. This method transforms natural, commercially available lysine, ornithine, diaminobutanoic acid, and diaminopropanoic acid to aryl alanines and homologated derivatives with varying chain lengths. Attractive features include ability to transverse scales, tolerance of pharma-relevant (hetero)aryls and biorthogonal functional groups, and the applicability beyond monomeric amino acids to short and macrocyclic peptide substrates. The success of this work relied on high-throughput experimentation to identify complementary reaction conditions that proved critical for achieving the coupling of a broad scope of aryl bromides with a range of amino acid and peptide substrates including macrocyclic peptides.


Amino Acids , Bromides , Amino Acids/chemistry , Amines/chemistry , Peptides/chemistry , Ornithine
3.
J Org Chem ; 87(12): 7589-7609, 2022 Jun 17.
Article En | MEDLINE | ID: mdl-35671350

Many contemporary organic transformations, such as Ni-catalyzed cross-electrophile coupling (XEC), require a reductant. Typically, heterogeneous reductants, such as Zn0 or Mn0, are used as the electron source in these reactions. Although heterogeneous reductants are highly practical for preparative-scale batch reactions, they can lead to complications in performing reactions on process scale and are not easily compatible with modern applications, such as flow chemistry. In principle, homogeneous organic reductants can address some of the challenges associated with heterogeneous reductants and also provide greater control of the reductant strength, which can lead to new reactivity. Nevertheless, homogeneous organic reductants have rarely been used in XEC. In this Perspective, we summarize recent progress in the use of homogeneous organic electron donors in Ni-catalyzed XEC and related reactions, discuss potential synthetic and mechanistic benefits, describe the limitations that inhibit their implementation, and outline challenges that need to be solved in order for homogeneous organic reductants to be widely utilized in synthetic chemistry. Although our focus is on XEC, our discussion of the strengths and weaknesses of different methods for introducing electrons is general to other reductive transformations.

4.
J Am Chem Soc ; 143(49): 21024-21036, 2021 12 15.
Article En | MEDLINE | ID: mdl-34846142

The syntheses of four new tunable homogeneous organic reductants based on a tetraaminoethylene scaffold are reported. The new reductants have enhanced air stability compared to current homogeneous reductants for metal-mediated reductive transformations, such as cross-electrophile coupling (XEC), and are solids at room temperature. In particular, the weakest reductant is indefinitely stable in air and has a reduction potential of -0.85 V versus ferrocene, which is significantly milder than conventional reductants used in XEC. All of the new reductants can facilitate C(sp2)-C(sp3) Ni-catalyzed XEC reactions and are compatible with complex substrates that are relevant to medicinal chemistry. The reductants span a range of nearly 0.5 V in reduction potential, which allows for control over the rate of electron transfer events in XEC. Specifically, we report a new strategy for controlled alkyl radical generation in Ni-catalyzed C(sp2)-C(sp3) XEC. The key to our approach is to tune the rate of alkyl radical generation from Katritzky salts, which liberate alkyl radicals upon single electron reduction, by varying the redox potentials of the reductant and Katritzky salt utilized in catalysis. Using our method, we perform XEC reactions between benzylic Katritzky salts and aryl halides. The method tolerates a variety of functional groups, some of which are particularly challenging for most XEC transformations. Overall, we expect that our new reductants will both replace conventional homogeneous reductants in current reductive transformations due to their stability and relatively facile synthesis and lead to the development of novel synthetic methods due to their tunability.


Alkenes/chemistry , Amines/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Reducing Agents/chemistry , Alkenes/chemical synthesis , Amines/chemical synthesis , Heterocyclic Compounds, 1-Ring/chemical synthesis , Molecular Structure , Oxidation-Reduction , Reducing Agents/chemical synthesis
5.
Chem Sci ; 12(26): 9031-9036, 2021 Jul 07.
Article En | MEDLINE | ID: mdl-34276931

An efficient route to the HCV antiviral agent uprifosbuvir was developed in 5 steps from readily available uridine in 50% overall yield. This concise synthesis was achieved by development of several synthetic methods: (1) complexation-driven selective acyl migration/oxidation; (2) BSA-mediated cyclization to anhydrouridine; (3) hydrochlorination using FeCl3/TMDSO; (4) dynamic stereoselective phosphoramidation using a chiral nucleophilic catalyst. The new route improves the yield of uprifosbuvir 50-fold over the previous manufacturing process and expands the tool set available for synthesis of antiviral nucleotides.

6.
ACS Catal ; 10(21): 12642-12656, 2020 Nov 06.
Article En | MEDLINE | ID: mdl-33628617

A dual catalytic system for cross-electrophile coupling reactions between aryl halides and alkyl halides that features a Ni catalyst, a Co cocatalyst, and a mild homogeneous reductant is described. Mechanistic studies indicate that the Ni catalyst activates the aryl halide, while the Co cocatalyst activates the alkyl halide. This allows the system to be rationally optimized for a variety of substrate classes by simply modifying the loadings of the Ni and Co catalysts based on the reaction product profile. For example, the coupling of aryl bromides and aryl iodides with alkyl bromides, alkyl iodides, and benzyl chlorides is demonstrated using the same Ni and Co catalysts under similar reaction conditions but with different optimal catalyst loadings in each case. Our system is tolerant of numerous functional groups and is capable of coupling heteroaryl halides, di-ortho-substituted aryl halides, pharmaceutically relevant druglike aryl halides, and a diverse range of alkyl halides. Additionally, the dual catalytic platform facilitates a series of selective one-pot three-component cross-electrophile coupling reactions of bromo(iodo)arenes with two distinct alkyl halides. This demonstrates the unique level of control that the platform provides and enables the rapid generation of molecular complexity. The system can be readily utilized for a wide range of applications as all reaction components are commercially available, the reaction is scalable, and toxic amide-based solvents are not required. It is anticipated that this strategy, as well as the underlying mechanistic framework, will be generalizable to other cross-electrophile coupling reactions.

7.
J Am Chem Soc ; 139(23): 7705-7708, 2017 06 14.
Article En | MEDLINE | ID: mdl-28555493

A Cu-catalyzed method has been identified for selective oxidative arylation of benzylic C-H bonds with arylboronic esters. The resulting 1,1-diarylalkanes are accessed directly from inexpensive alkylarenes containing primary and secondary benzylic C-H bonds, such as toluene or ethylbenzene. All catalyst components are commercially available at low cost, and the arylboronic esters are either commercially available or easily accessible from the commercially available boronic acids. The potential utility of these methods in medicinal chemistry applications is highlighted.

8.
J Am Chem Soc ; 138(20): 6416-9, 2016 05 25.
Article En | MEDLINE | ID: mdl-27171973

A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.


Alcohols/chemistry , Amides/chemical synthesis , Amines/chemistry , Copper/chemistry , Oxygen/chemistry , Aerobiosis , Oxidation-Reduction
9.
Science ; 351(6274): 681-4, 2016 Feb 12.
Article En | MEDLINE | ID: mdl-26912852

Despite a well-developed and growing body of work in copper catalysis, the potential of copper to serve as a photocatalyst remains underexplored. Here we describe a photoinduced copper-catalyzed method for coupling readily available racemic tertiary alkyl chloride electrophiles with amines to generate fully substituted stereocenters with high enantioselectivity. The reaction proceeds at -40°C under excitation by a blue light-emitting diode and benefits from the use of a single, Earth-abundant transition metal acting as both the photocatalyst and the source of asymmetric induction. An enantioconvergent mechanism transforms the racemic starting material into a single product enantiomer.

10.
Bioorg Med Chem Lett ; 25(17): 3488-94, 2015 Sep 01.
Article En | MEDLINE | ID: mdl-26212776

Synthesis and SAR studies of novel triazolobenzazepinones as gamma secretase modulators (GSMs) are presented in this communication. Starting from our azepinone leads, optimization studies toward improving central lowering of Aß42 led to the discovery of novel benzo-fused azepinones. Several benzazepinones were profiled in vivo and found to lower brain Aß42 levels in Sprague Dawley rats and transgenic APP-YAC mice in a dose-dependent manner after a single oral dose. Compound 34 was further progressed into a pilot study in our cisterna-magna-ported rhesus monkey model, where we observed robust lowering of CSF Aß42 levels.


Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Drug Discovery , Macaca mulatta , Mice , Mice, Transgenic , Rats , Rats, Sprague-Dawley
11.
J Organomet Chem ; 52: 97-102, 2015 May 01.
Article En | MEDLINE | ID: mdl-25843978

Palladium-catalyzed methods for C-H oxygenation with O2 as the stoichiometric oxidant are limited. Here, we describe the use of nitrite and nitrate sources as NOx-based redox mediators in the acetoxylation of benzene. The conditions completely avoid formation of biphenyl as a side product, and strongly favor formation of phenyl acetate over nitrobenzene (PhOAc:PhNO2 ratios up to 40:1). Under the optimized reaction conditions, with 0.1 mol% Pd(OAc)2, 136 turnovers of Pd are achieved with only 1 atm of O2 pressure.

12.
J Am Chem Soc ; 135(2): 624-7, 2013 Jan 16.
Article En | MEDLINE | ID: mdl-23281960

The first Suzuki cross-couplings of unactivated tertiary alkyl electrophiles are described. The method employs a readily accessible catalyst (NiBr(2)·diglyme/4,4'-di-tert-butyl-2,2'-bipyridine, both commercially available) and represents the initial example of the use of a group 10 catalyst to cross-couple unactivated tertiary electrophiles to form C-C bonds. This approach to the synthesis of all-carbon quaternary carbon centers does not suffer from isomerization of the alkyl group, in contrast with the umpolung strategy for this bond construction (cross-coupling of a tertiary alkylmetal with an aryl electrophile). Preliminary mechanistic studies are consistent with the generation of a radical intermediate along the reaction pathway.


Bromides/chemistry , Carbon/chemistry , Nickel/chemistry , Biphenyl Compounds/chemistry , Catalysis , Methane/chemistry , Molecular Structure
13.
Bioorg Med Chem Lett ; 22(9): 3140-6, 2012 May 01.
Article En | MEDLINE | ID: mdl-22497762

Synthesis and SAR studies of novel aryl triazoles as gamma secretase modulators (GSMs) are presented in this communication. Starting from our aryl triazole leads, optimization studies were continued and the series progressed towards novel amides and lactams. Triazole 57 was identified as the most potent analog in this series, displaying single-digit nanomolar Aß42 IC(50) in cell-based assays and reduced affinity for the hERG channel.


Amyloid Precursor Protein Secretases/metabolism , Trans-Activators/metabolism , Triazoles/pharmacology , Amides/chemistry , Amides/pharmacology , Amyloid beta-Peptides , Cell Line , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Lactams , Structure-Activity Relationship , Transcriptional Regulator ERG , Triazoles/chemistry
14.
J Am Chem Soc ; 133(39): 15362-4, 2011 Oct 05.
Article En | MEDLINE | ID: mdl-21913638

With the aid of a chiral nickel catalyst, enantioselective γ- (and δ-) alkylations of carbonyl compounds can be achieved through the coupling of γ-haloamides with alkylboranes. In addition to primary alkyl nucleophiles, for the first time for an asymmetric cross-coupling of an unactivated alkyl electrophile, an arylmetal, a boronate ester, and a secondary (cyclopropyl) alkylmetal compound are shown to couple with significant enantioselectivity. A mechanistic study indicates that cleavage of the carbon-halogen bond of the electrophile is irreversible under the conditions for asymmetric carbon-carbon bond formation.


Ketones/chemistry , Alkylation , Catalysis , Nickel/chemistry , Organometallic Compounds/chemistry , Stereoisomerism , Substrate Specificity
15.
Bioorg Med Chem Lett ; 21(13): 4083-7, 2011 Jul 01.
Article En | MEDLINE | ID: mdl-21616665

Synthesis, SAR, and evaluation of aryl triazoles as novel gamma secretase modulators (GSMs) are presented in this communication. Starting from the literature and in-house leads, we evaluated a range of five-membered heterocycles as replacements for olefins commonly found in non-acid GSMs. 1,2,3-C-aryl-triazoles were identified as suitable replacements which exhibited good modulation of γ-secretase activity, excellent pharmacokinetics and good central lowering of Aß42 in Sprague-Dawley rats.


Amyloid Precursor Protein Secretases/metabolism , Triazoles/chemical synthesis , Triazoles/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Protein Binding , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Triazoles/metabolism
...