Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Acta Trop ; 254: 107188, 2024 Jun.
Article En | MEDLINE | ID: mdl-38531428

Cryptosporidium spp. and G. duodenalis often infect humans, cats, and other mammals, causing diarrhea and being responsible for numerous outbreaks of waterborne and foodborne infections worldwide. The rapid increase in the number of pet cats poses a substantial public health risk. However, there were few reports about the infection of Cryptosporidium spp. and G. duodenalis infections in pet cats in Henan Province, central China. Thus, to understand the prevalence and genetic distribution of Cryptosporidium spp. and G. duodenalis in pet cats, and to evaluate the zoonotic potential, possible transmission routes and public health implications of isolates, fecal samples (n = 898) were randomly collected from pet cats in 11 cities in Henan Province, central China. Nested PCR based on the SSU rRNA gene and bg gene was used to the prevalence of Cryptosporidium spp. and G. duodenalis, respectively. The prevalence was 0.8 % (7/898) and 2.0 % (18/898) for Cryptosporidium spp. and G. duodenalis respectively. Additionally, the Cryptosporidium spp. positive isolates were identified as C. parvum subtype IIdA19G1 by gp60 gene. In the present study, the IIdA19G1 subtype was discovered in pet cats for the first time in China, enriching the information on the host type and geographical distribution of Cryptosporidium spp. in China. For G. duodenalis, a total of 18 G. duodenalis positive samples were identified, belonging to four assemblages: a zoonotic assemblage A1 (4/898), three host-specific assemblages C (8/898), D (5/898), and F (1/898). Interestingly, we found that pet cats infected with Cryptosporidium spp. and G. duodenalis are more likely to experience emaciation symptoms compared to the negative group. More importantly, the prevalence of Cryptosporidium spp. and G. duodenalis detected in the present study were low, but the subtype IIdA19G1 of Cryptosporidium spp. and the assemblages A1, C, D, and F of G. duodenalis have the potential for zoonotic transmission. Thus, we should focus on preventing and controlling the risk of cross-species transmission that may occur in pet cats in Henan Province.


Cat Diseases , Cryptosporidiosis , Cryptosporidium , Feces , Giardia lamblia , Giardiasis , Pets , Animals , Cats , China/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/transmission , Cat Diseases/parasitology , Cat Diseases/epidemiology , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Feces/parasitology , Giardia lamblia/genetics , Giardia lamblia/isolation & purification , Giardia lamblia/classification , Pets/parasitology , Prevalence , Giardiasis/epidemiology , Giardiasis/veterinary , Giardiasis/parasitology , Giardiasis/transmission , DNA, Protozoan/genetics , Phylogeny , Polymerase Chain Reaction , Genotype , Zoonoses/parasitology , Zoonoses/epidemiology , Zoonoses/transmission
2.
Prev Vet Med ; 226: 106162, 2024 May.
Article En | MEDLINE | ID: mdl-38518658

Tritrichomonas foetus (T. foetus) is a protozoal pathogen that infects cats and constitutes a significant cause of chronic colitis and diarrhea. Perturbations in the gut microbiota (GM) are affected by Trichomonas infection. Furthermore, dysregulation of the host GM enhances Trichomonas pathogenicity. However, it remains unclear whether the occurrence of diarrhea is associated with a dysregulation in GM following T. foetus infection in cats. Hence, the primary objective of this investigation was to explore the correlation between T. foetus infection and dysregulation in GM by analyzing fecal samples obtained from pet cats in Henan Province, central China. We randomly collected 898 fecal samples from pet cats living in 11 prefectural cities within Henan Province, and T. foetus was screened with polymerase chain reaction (PCR) amplification based on the 18 S rRNA gene. Subsequently, six T. foetus-positive and six T. foetus-negative samples underwent analysis through 16 S rRNA gene sequencing to evaluate the gut microbiota's composition. The overall prevalence of T. foetus infection among the collected samples was found to be 6.01% (54/898). Notably, a higher prevalence of infection was observed in young, undewormed, unimmunized, and diarrheic pet cats. T. foetus infection was found to significantly alter the composition of the pet cat fecal microbiota, leading to dysfunctions. Moreover, it resulted in a substantial increase in the abundance of Bacteroidetes, Proteobacteria, and Phascolarctobacterium spp., while decreasing the ratio of Firmicutes to Bacteroidetes (F/B) and the abundance of Actinobacteria, Clostridiaceae_Clostridium spp., Phascolarctobacterium spp., SMB53 spp., and Blautia spp. We constructed ROC curves to assess the diagnostic value of specific bacterial taxa in discriminating T. foetus infection. The analysis revealed that Proteobacteria and Clostridiaceae_Clostridium spp. were the most reliable single predictors for T. foetus infection. This finding suggests that alterations in the GM may be strongly associated with T. foetus infections.


Cat Diseases , Gastrointestinal Microbiome , Protozoan Infections, Animal , Tritrichomonas foetus , Cats , Animals , Protozoan Infections, Animal/epidemiology , Prevalence , Diarrhea/epidemiology , Diarrhea/veterinary , Feces , Risk Factors , Cat Diseases/epidemiology
3.
Parasitol Res ; 123(1): 74, 2023 Dec 29.
Article En | MEDLINE | ID: mdl-38155301

Pentatrichomonas hominis (P. hominis) is a zoonotic parasite that affects a wide range of hosts, causing gastrointestinal diseases. The present study aimed to evaluate the prevalence of P. hominis among caged foxes and raccoon dogs and the effect of P. hominis on the gut microbiota in female foxes. A total of 893 fresh fecal samples were collected from the Hebei and Henan Provinces in China. P. hominis was screened based on 18S rRNA gene expression via nested PCR. The difference in the gut microbiota between nine P. hominis-positive and nine P. hominis-negative samples was investigated by 16S rRNA gene sequencing. The total prevalence of P. hominis infection in foxes and raccoon dogs was 31.7% (283/893). The prevalence rates of P. hominis infection were 28.2% (88/312) and 33.6% (195/581) in foxes and raccoon dogs, respectively. Phylogenetic analysis revealed that all P. hominis strains detected in foxes and raccoon dogs in the present study were the zoonotic genotype CC1. Moreover, compared with those in the P. hominis-negative group, the diversity of the gut microbiota in the P. hominis-positive group was lower, and the abundance of Firmicutes and the ratio of Firmicutes/Bacteroidetes (F/B) in the P. hominis-positive group were lower than those in the P. hominis-negative group. We speculate that these differences may be due to indigestion and diarrhea in infected female foxes. Overall, the present study evaluated the prevalence of P. hominis in foxes and raccoon dogs in the Henan and Hebei Provinces and revealed that P. hominis infection interrupted the diversity of the gut microbiota in female foxes.


Gastrointestinal Microbiome , Trichomonas , Animals , Female , Raccoon Dogs/parasitology , Foxes/parasitology , Prevalence , Phylogeny , RNA, Ribosomal, 16S/genetics , Trichomonas/genetics , China/epidemiology
4.
Toxins (Basel) ; 14(12)2022 12 01.
Article En | MEDLINE | ID: mdl-36548738

The widespread fungal toxin Aflatoxin B1 (AFB1) is an inevitable pollutant affecting the health of humans, poultry, and livestock. Although studies indicate that AFB1 is hepatotoxic, there are few studies on AFB1-induced hepatotoxicity in sheep. Thus, this study examined how AFB1 affected sheep liver function 24 h after the animals received 1 mg/kg bw of AFB1 orally (dissolved in 20 mL, 4% v/v ethanol). The acute AFB1 poisoning caused histopathological injuries to the liver and increased total bilirubin (TBIL) and alkaline phosphatase (AKP) levels. AFB1 also markedly elevated the levels of the pro-inflammatory cytokines TNF-α and IL-6 while considerably reducing the expression of antioxidation-related genes (SOD-1 and SOD-2) and the anti-inflammatory gene IL-10 in the liver. Additionally, it caused apoptosis by dramatically altering the expression of genes associated with apoptosis including Bax, Caspase-3, and Bcl-2/Bax. Notably, AFB1 exposure altered the gut microbiota composition, mainly manifested by BF311 spp. and Alistipes spp. abundance, which are associated with liver injury. In conclusion, AFB1 can cause liver injury and liver dysfunction in sheep via oxidative stress, inflammation, apoptosis, and gut-microbiota disturbance.


Chemical and Drug Induced Liver Injury , Gastrointestinal Microbiome , Humans , Animals , Sheep , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis , Liver/metabolism , Oxidative Stress , Chemical and Drug Induced Liver Injury/metabolism
...