Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(3): e22796, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36723950

RESUMEN

Hypoxic postconditioning (HPC) with 8% oxygen increases nuclear accumulation of ß-catenin through activating the classical Wnt pathway, thereby alleviating transient global cerebral ischemia (tGCI)-induced neuronal damage in the hippocampal CA1 subregion of adult rats. However, little is understood about the regulatory mechanism of nuclear ß-catenin in HPC-mediated cerebral ischemic tolerance. Although lysine(K)-specific demethylase 2A (KDM2A) has been known as a crucial regulator of nuclear ß-catenin destabilization, whether it plays an important role through modulating nuclear ß-catenin in cerebral ischemic tolerance induced by HPC remains unknown. In this study, we explored the molecular mechanism of stabilizing nuclear ß-catenin by inhibiting KDM2A-mediated demethylation in the HPC-offered neuroprotection against tGCI. In addition, we confirmed that nuclear methylated-ß-catenin in CA1 decreased and nuclear ß-catenin turnover increased after tGCI, which were reversed by HPC. The administration with methyltransferase inhibitor AdOx abrogated HPC-induced methylation and stabilization of nuclear ß-catenin in CA1, as well as the neuroprotection against tGCI. Notably, HPC downregulated the expression of KDM2A in CA1 and reduced the interaction between KDM2A and ß-catenin in the nucleus after tGCI. The knockdown of KDM2A with small-interfering RNA could upregulate nuclear methylated-ß-catenin and stabilize ß-catenin, thereby increasing survivin in CA1 and improving the cognitive function of rats after tGCI. Opposite results were observed by the administration of KDM2A-carried adenovirus vector. Furthermore, we demonstrated that KDM2A mediates the demethylation of nuclear ß-catenin through jumonji C (JmjC) domain of KDM2A in HEK-293T and SH-SY5Y cells. Our data support that the inhibition of KDM2A-mediated demethylation of nuclear ß-catenin contributes to HPC-induced neuroprotection against tGCI.


Asunto(s)
Proteínas F-Box , Ataque Isquémico Transitorio , Neuroblastoma , Ratas , Humanos , Animales , Ratas Wistar , beta Catenina/metabolismo , Hipocampo/metabolismo , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo
2.
Neurobiol Dis ; 179: 106043, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805078

RESUMEN

Hypoxic postconditioning (HPC) has been reported to enhance Parkin-catalyzed mitochondrial ubiquitination to restore mitophagy in hippocampal CA1 against transient global cerebral ischemia (tGCI). However, the molecular mechanism leading ubiquitinated mitochondria to final clearance during HPC-mediated mitophagy after tGCI is unclear. This study aims to investigate whether HPC restores mitophagy after tGCI through Parkin-induced K63-linked poly-ubiquitination (K63-Ub) to activate tumor necrosis factor associated factor family member associated nuclear factor κB activator -binding kinase 1 (TBK1) in CA1 of male rats. We found that HPC maintained TBK1 expression, promoted p62 and TBK1 phosphorylation in mitochondria, and enhanced their recruitments to mitochondria in CA1 after tGCI. However, these effects were partially abolished by TBK1 inhibitor BX795. K63-Ub of mitochondrial TBK1 was disturbed at 26 h of reperfusion after tGCI, which was reversed by HPC. The maintenance of K63-Ub of mitochondrial TBK1 induced by HPC was counteracted under Parkin knockdown with AAV-mediated Prkn small-interfering RNA, accompanied by the suppression on TBK1 activation and the reduction of mitochondrial p62 phosphorylation. This innovative study indicated that HPC maintained K63-Ub of TBK1 in a Parkin-dependent manner to promote TBK1 phosphorylation, and then phosphorylated TBK1 activated p62 to restore mitophagy, thereby alleviating neuronal damage in CA1 after tGCI.


Asunto(s)
Ataque Isquémico Transitorio , Mitofagia , Animales , Masculino , Ratas , Procesamiento Proteico-Postraduccional , Ratas Wistar , Ubiquitina-Proteína Ligasas/genética
3.
Cell Death Dis ; 12(7): 630, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145219

RESUMEN

Mitophagy alleviates neuronal damage after cerebral ischemia by selectively removing dysfunctional mitochondria. Phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy is the most well-known type of mitophagy. However, little is known about the role of PINK1/Parkin-mediated mitophagy in ischemic tolerance induced by hypoxic postconditioning (HPC) with 8% O2 against transient global cerebral ischemia (tGCI). Hence, we aimed to test the hypothesis that HPC-mediated PINK1/Parkin-induced mitochondrial ubiquitination and promotes mitophagy, thus exerting neuroprotection in the hippocampal CA1 subregion against tGCI. We found that mitochondrial clearance was disturbed at the late phase of reperfusion after tGCI, which was reversed by HPC, as evidenced by the reduction of the translocase of outer mitochondrial membrane 20 homologs (TOMM20), translocase of inner mitochondrial membrane 23 (TIMM23) and heat shock protein 60 (HSP60) in CA1 after HPC. In addition, HPC further increased the ratio of LC3II/I in mitochondrial fraction and promoted the formation of mitophagosomes in CA1 neurons after tGCI. The administration of lysosome inhibitor chloroquine (CQ) intraperitoneally or mitophagy inhibitor (Mdivi-1) intracerebroventricularly abrogated HPC-induced mitochondrial turnover and neuroprotection in CA1 after tGCI. We also found that HPC activated PINK1/Parkin pathway after tGCI, as shown by the augment of mitochondrial PINK1 and Parkin and the promotion of mitochondrial ubiquitination in CA1. In addition, PINK1 or Parkin knockdown with small-interfering RNA (siRNA) suppressed the activation of PINK1/Parkin pathway and hampered mitochondrial clearance and attenuated neuroprotection induced by HPC, whereas PINK1 overexpression promoted PINK1/Parkin-mediated mitophagy and ameliorated neuronal damage in CA1 after tGCI. Taken together, the new finding in this study is that HPC-induced neuroprotection against tGCI through promoting mitophagy mediated by PINK1/Parkin-dependent pathway.


Asunto(s)
Región CA1 Hipocampal/enzimología , Hipoxia/enzimología , Ataque Isquémico Transitorio/enzimología , Mitocondrias/enzimología , Mitofagia , Neuronas/enzimología , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Región CA1 Hipocampal/ultraestructura , Modelos Animales de Enfermedad , Hipoxia/genética , Hipoxia/patología , Ataque Isquémico Transitorio/genética , Ataque Isquémico Transitorio/patología , Masculino , Mitocondrias/genética , Mitocondrias/ultraestructura , Neuronas/ultraestructura , Proteínas Quinasas/genética , Transporte de Proteínas , Ratas Wistar , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA