Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37565490

RESUMEN

Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.


Asunto(s)
Polimorfismo de Nucleótido Simple , Selección Artificial , Animales , Genotipo , Genómica/métodos , Fenotipo
2.
Hortic Res ; 9: uhac125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928399

RESUMEN

The cultivated strawberry (Fragaria ×ananassa) arose through a hybridization of two wild American octoploid strawberry species in a French garden in the 1750s. Since then, breeders have developed improved cultivars adapted to different growing regions. Diverse germplasm is crucial to meet the challenges strawberry breeders will continue to address. The USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon maintains the U.S. strawberry collection. Recent developments in high-throughput genotyping for strawberry can provide new insights about the diversity and structure of the collection, germplasm management, and future breeding strategies. Genotyping was conducted on 539 F. ×ananassa accessions using either the iStraw35 or FanaSNP 50 K Axiom array. Data for markers shared by the two arrays were curated for call quality, missing data, and minor allele frequency resulting in 4033 markers for structure assessment, diversity analysis, pedigree confirmation, core collection development, and the identification of haplotypes associated with desirable traits. The F. ×ananassa collection was equally diverse across the different geographic regions represented. K-means clustering, sNMF, and UPGMA hierarchal clustering revealed seven to nine sub-populations associated with different geographic breeding centers. Two 100 accession core collections were created. Pedigree linkages within the collection were confirmed. Finally, accessions containing disease resistance-associated haplotypes for FaRCa1, FaRCg1, FaRMp1, and FaRPc2 were identified. These new core collections will allow breeders and researchers to more efficiently utilize the F. ×ananassa collection. The core collections and other accessions of interest can be requested for research from the USDA-ARS NCGR via the Germplasm Resources Information Network (https://www.ars-grin.gov/).

3.
Front Plant Sci ; 13: 793925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401609

RESUMEN

The necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) causes the foliar disease tan spot in both bread wheat and durum wheat. Wheat lines carrying the tan spot susceptibility gene Tsc1 are sensitive to the Ptr-produced necrotrophic effector (NE) Ptr ToxC. A compatible interaction results in leaf chlorosis, reducing yield by decreasing the photosynthetic area of leaves. Developing genetically resistant cultivars will effectively reduce disease incidence. Toward that goal, the production of chlorosis in response to inoculation with Ptr ToxC-producing isolates was mapped in two low-resolution biparental populations derived from LMPG-6 × PI 626573 (LP) and Louise × Penawawa (LouPen). In total, 58 genetic markers were developed and mapped, delineating the Tsc1 candidate gene region to a 1.4 centiMorgan (cM) genetic interval spanning 184 kb on the short arm of chromosome 1A. A total of nine candidate genes were identified in the Chinese Spring reference genome, seven with protein domains characteristic of resistance genes. Mapping of the chlorotic phenotype, development of genetic markers, both for genetic mapping and marker-assisted selection (MAS), and the identification of Tsc1 candidate genes provide a foundation for map-based cloning of Tsc1.

4.
PLoS One ; 17(4): e0257746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421090

RESUMEN

Verification of clonal identity of hop (Humulus lupulus L.) cultivars within breeding programs and germplasm collections is vital to conserving genetic resources. Accurate and economic DNA-based tools are needed in dioecious hop to confirm identity and parentage, neither of which can be reliably determined from morphological observations. In this study, we developed two fingerprinting sets for hop: a 9-SSR fingerprinting set containing high-core repeats that can be run in a single PCR reaction and a kompetitive allele specific PCR (KASP) assay of 25 single nucleotide polymorphisms (SNPs). The SSR set contains a sex-linked primer pair, HI-AGA7, that was used to genotype 629 hop accessions from the US Department of Agriculture (USDA) National Clonal Germplasm Repository (NCGR), the USDA Forage Seed and Cereal Research (FSCR), and the University of Nebraska-Lincoln (UNL) collections. The SSR set identified unique genotypes except for 89 sets of synonymous samples. These synonyms included: cultivars with different designations, the same cultivars from different sources, heat-treated clones, and clonal variants. Population structure analysis clustered accessions into wild North American (WNA) and cultivated groups. Diversity was slightly higher in the cultivated samples due to larger sample size. Parentage and sib-ship analyses were used to identify true-to-type cultivars. The HI-AGA7 marker generated two male- and nine female-specific alleles among the cultivated and WNA samples. The SSR and KASP fingerprinting sets were compared in 190 samples consisting of cultivated and WNA accession for their ability to confirm identity and assess diversity and population structure. The SSR fingerprinting set distinguished cultivars, selections and WNA accessions while the KASP assays were unable to distinguish the WNA samples and had lower diversity estimates than the SSR set. Both fingerprinting sets are valuable tools for identity confirmation and parentage analysis in hop for different purposes. The 9-SSR assay is cost efficient when genotyping a small number of wild and cultivated hop samples (<96) while the KASP assay is easy to interpret and cost efficient for genotyping a large number of cultivated samples (multiples of 96).


Asunto(s)
Humulus , Alelos , Variación Genética , Genotipo , Humulus/genética , Repeticiones de Microsatélite/genética , Filogenia , Fitomejoramiento , Reacción en Cadena de la Polimerasa
5.
Mol Biol Evol ; 38(6): 2285-2305, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33507311

RESUMEN

Cultivated strawberry (Fragaria × ananassa) is one of our youngest domesticates, originating in early eighteenth-century Europe from spontaneous hybrids between wild allo-octoploid species (Fragaria chiloensis and Fragaria virginiana). The improvement of horticultural traits by 300 years of breeding has enabled the global expansion of strawberry production. Here, we describe the genomic history of strawberry domestication from the earliest hybrids to modern cultivars. We observed a significant increase in heterozygosity among interspecific hybrids and a decrease in heterozygosity among domesticated descendants of those hybrids. Selective sweeps were found across the genome in early and modern phases of domestication-59-76% of the selectively swept genes originated in the three less dominant ancestral subgenomes. Contrary to the tenet that genetic diversity is limited in cultivated strawberry, we found that the octoploid species harbor massive allelic diversity and that F. × ananassa harbors as much allelic diversity as either wild founder. We identified 41.8 M subgenome-specific DNA variants among resequenced wild and domesticated individuals. Strikingly, 98% of common alleles and 73% of total alleles were shared between wild and domesticated populations. Moreover, genome-wide estimates of nucleotide diversity were virtually identical in F. chiloensis,F. virginiana, and F. × ananassa (π = 0.0059-0.0060). We found, however, that nucleotide diversity and heterozygosity were significantly lower in modern F. × ananassa populations that have experienced significant genetic gains and have produced numerous agriculturally important cultivars.


Asunto(s)
Domesticación , Fragaria/genética , Variación Genética , Genoma de Planta , Hibridación Genética , Cromosomas de las Plantas , Desequilibrio de Ligamiento , Poliploidía , Selección Genética
6.
Hortic Res ; 7(1): 177, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328430

RESUMEN

The Rosaceae crop family (including almond, apple, apricot, blackberry, peach, pear, plum, raspberry, rose, strawberry, sweet cherry, and sour cherry) provides vital contributions to human well-being and is economically significant across the U.S. In 2003, industry stakeholder initiatives prioritized the utilization of genomics, genetics, and breeding to develop new cultivars exhibiting both disease resistance and superior horticultural quality. However, rosaceous crop breeders lacked certain knowledge and tools to fully implement DNA-informed breeding-a "chasm" existed between existing genomics and genetic information and the application of this knowledge in breeding. The RosBREED project ("Ros" signifying a Rosaceae genomics, genetics, and breeding community initiative, and "BREED", indicating the core focus on breeding programs), addressed this challenge through a comprehensive and coordinated 10-year effort funded by the USDA-NIFA Specialty Crop Research Initiative. RosBREED was designed to enable the routine application of modern genomics and genetics technologies in U.S. rosaceous crop breeding programs, thereby enhancing their efficiency and effectiveness in delivering cultivars with producer-required disease resistances and market-essential horticultural quality. This review presents a synopsis of the approach, deliverables, and impacts of RosBREED, highlighting synergistic global collaborations and future needs. Enabling technologies and tools developed are described, including genome-wide scanning platforms and DNA diagnostic tests. Examples of DNA-informed breeding use by project participants are presented for all breeding stages, including pre-breeding for disease resistance, parental and seedling selection, and elite selection advancement. The chasm is now bridged, accelerating rosaceous crop genetic improvement.

7.
G3 (Bethesda) ; 10(10): 3729-3740, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32769135

RESUMEN

A Rosaceae family-level candidate gene approach was used to identify genes associated with sugar content in blackberry (Rubus subgenus Rubus). Three regions conserved among apple (Malus × domestica), peach (Prunus persica), and alpine strawberry (Fragaria vesca) were identified that contained previously detected sweetness-related quantitative trait loci (QTL) in at least two of the crops. Sugar related genes from these conserved regions and 789 sugar-associated apple genes were used to identify 279 Rubus candidate transcripts. A Hyb-Seq approach was used in conjunction with PacBio sequencing to generate haplotype level sequence information of sugar-related genes for 40 cultivars with high and low soluble solids content from the University of Arkansas and USDA blackberry breeding programs. Polymorphisms were identified relative to the 'Hillquist' blackberry (R. argutus) and ORUS 4115-3 black raspberry (R. occidentalis) genomes and tested for their association with soluble solids content (SSC). A total of 173 alleles were identified that were significantly (α = 0.05) associated with SSC. KASP genotyping was conducted for 92 of these alleles on a validation set of blackberries from each breeding program and 48 markers were identified that were significantly associated with SSC. One QTL, qSSC-Ruh-ch1.1, identified in both breeding programs accounted for an increase of 1.5 °Brix and the polymorphisms were detected in the intron space of a sucrose synthase gene. This discovery represents the first environmentally stable sweetness QTL identified in blackberry. The approach demonstrated in this study can be used to develop breeding tools for other crops that have not yet benefited directly from the genomics revolution.


Asunto(s)
Fragaria , Malus , Rosaceae , Rubus , ADN , Fragaria/genética , Frutas , Malus/genética , Fitomejoramiento , Rosaceae/genética , Rubus/genética
8.
Theor Appl Genet ; 133(6): 2011-2020, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32166372

RESUMEN

KEY MESSAGE: Rdr3 is a novel resistance gene of black spot in roses that maps to a chromosome 6 homolog. A new DNA test was developed and can be used to pyramid black spot resistance in roses. Diplocarpon rosae, the cause of rose black spot, is one of the most devastating foliar pathogens of cultivated roses (Rosa spp.). The primary method of disease control is fungicides, and they are viewed unfavorably by home gardeners due to potential environmental and health impacts. Planting rose cultivars with genetic resistance to black spot can reduce many of the fungicide applications needed in an integrated pest management system. To date, four resistance genes have been identified in roses (Rdr1, Rdr2, Rdr3, and Rdr4). Rdr3 was never mapped and is thought to be unique from Rdr1 and Rdr2. It is unknown whether it is an allele of Rdr4. To assess the novelty of Rdr3, a mapping population was created by crossing the Rdr3 containing cultivar George Vancouver with the susceptible cultivar Morden Blush. The mapping population was genotyped with the WagRhSNP 68 K Axiom array and mapped using the 'polymapR' package. Rdr3 was mapped to a chromosome 6 homolog confirming it is different from Rdr1 and Rdr2, found on chromosome 1, and from Rdr4, found on chromosome 5. The mapping information was used in conjunction with the Rosa chinensis genome assembly to develop new tightly linked SSRs for marker-assisted breeding. Three markers were able to predict the presence of Rdr3 in a 63-cultivar validation set. Additionally, 12 cultivars appear to have resistance genes other than Rdr3. The improved diagnostic markers will be a great asset to the rose-breeding community toward developing new black spot-resistant cultivars.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Rosa/genética , Rosa/microbiología , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Genes de Plantas , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología
9.
Phytopathology ; 110(7): 1305-1311, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32175827

RESUMEN

Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a persistent problem for pear (Pyrus spp.) growers in the United States. Growing resistant cultivars is one of the best options for managing fire blight. The cultivars Potomac and Old Home and the selection NJA2R59T69 display resistance to fire blight. As such, three mapping populations (El Dorado × Potomac, Old Home × Bartlett, and NJA2R59T69 × Bartlett) were developed to identify genomic regions associated with resistance to fire blight. Progeny were phenotyped during 2017 and 2018 by inoculating multiple actively growing shoots of field-grown seedling trees with E. amylovora isolate E153n via the cut-leaf method. Genotyping was conducted using the recently developed Axiom Pear 70 K Genotyping Array and chromosomal linkage groups were created for each population. An integrated two-way pseudo-testcross approach was used to map quantitative trait loci (QTLs). Resistance QTLs were identified on chromosome 2 for each population. The QTLs identified in the El Dorado × Potomac and Old Home × Bartlett populations are in the same region as QTLs that were previously identified in Harrow Sweet and Moonglow. The QTL in NJA2R59T69 mapped proximally to the previously identified QTLs and originated from an unknown Asian or occidental source. Future research will focus on further characterizing the resistance regions and developing tools for DNA-informed breeding.


Asunto(s)
Erwinia amylovora , Pyrus , Ligamiento Genético , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo
10.
Gigascience ; 8(12)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816089

RESUMEN

BACKGROUND: We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. FINDINGS: A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. CONCLUSIONS: We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.


Asunto(s)
Cromosomas de las Plantas/genética , Mapeo Contig/métodos , Pyrus/genética , Tamaño del Genoma , Haploidia , Anotación de Secuencia Molecular , Fitomejoramiento , Análisis de Secuencia de ADN , Sintenía
11.
Plant Dis ; 103(9): 2337-2344, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31306087

RESUMEN

Puccinia graminis f. sp. tritici race TTKSF+ was collected from the South African wheat cultivar 'Matlabas' in 2010. F2 and F3 populations derived from a Matlabas × Line 37-07 cross segregated for a single resistance gene to race TTKSF that is avirulent to Matlabas. In screening genomic DNA bulks of susceptible or resistant F2 plants with simple sequence repeat (SSR) markers, three chromosome arm 2BS markers and one multilocus marker amplified alleles present only in the resistant bulks and Matlabas. Additional 2B-specific SSR markers, incorporating markers spanning regions containing Sr9h, SrWLR, Sr28, and Sr47, were screened in the parental lines and mapped in the F2 population. Linkage and QTL mapping showed that the gene is located between Xbarc160 in the centromeric region and Xgwm47 on the long arm of chromosome 2B. When 2B-specific SNP markers were mapped, the area of interest was delimited to a 15.3 cM region on chromosome arm 2BL, with XIWA543-HRM and Xgwm47 as flanking loci. Matlabas, Webster, and related Sr9h lines all produced a similar, low infection type to race TTKSF, but were susceptible to race TTKSF+. Phenotypic data and allelic studies suggested that stem rust resistance in Matlabas was derived from an Sr9h source.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Triticum , Resistencia a la Enfermedad/genética , Genotipo , Triticum/genética , Triticum/microbiología
12.
Front Plant Sci ; 9: 1730, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534133

RESUMEN

Rose black spot, caused by Diplocarpon rosae, is one of the most devastating foliar diseases of cultivated roses (Rosa spp.). The globally distributed pathogen has the potential to cause large economic losses in the outdoor cultivation of roses. Fungicides are the primary method to manage the disease, but are often viewed unfavorably by home gardeners due to potential environmental and health impacts. As such, rose cultivars with genetic resistance to black spot are highly desired. The tetraploid climbing rose Brite EyesTM ('RADbrite') is known for its resistance to black spot. To better characterize the resistance present in Brite EyesTM, phenotyping was conducted on a 94 individual F1 population developed by crossing Brite EyesTM to the susceptible tetraploid rose 'Morden Blush'. Brite EyesTM was resistant to all D. rosae races evaluated except for race 12. The progeny were either resistant or susceptible to all races (2, 3, 8, 9, 10, 11, and 13) evaluated. The segregation ratio was 1:1 (χ2 = 0.3830, P = 0.5360) suggesting resistance is conferred by a single locus. The roses were genotyped with the WagRhSNP 68K Axiom array and the 'polymapR' package was used to construct a map. A single resistance locus (Rdr4) was identified on the long arm of chromosome 5 homoeolog 4. Three resistance loci have been previously identified (Rdr1, Rdr2, and Rdr3). Both Rdr1 and Rdr2 are located on a chromosome 1 homoeolog. The chromosomal location of Rdr3 is unknown, however, races 3 and 9 are virulent on Rdr3. Rdr4 is either a novel gene or an allele of Rdr3 as it provides resistance to races 3 and 9. Due to its broad resistance, Rdr4 is an excellent gene to introgress into new rose cultivars.

13.
BMC Genomics ; 19(1): 67, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29357813

RESUMEN

BACKGROUND: Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 was identified as a source of Pgt resistance. This accession exhibits resistance to multiple Ug99-lineage and North American Pgt races at seedling and adult-plant stages. A recombinant inbred population was developed by crossing the susceptible line LMPG-6 with a single plant selection of PI 362698. A genetic map was constructed using the Illumina iSelect 90 K wheat assay and the markers csLv34, NB-LRR3, and wMAS000003 and quantitative trait locus (QTL) analysis was performed. RESULTS: QTL analysis identified five significant QTLs (α = 0.05) on chromosomes 2B, 3B, 6A, 6D, and 7A associated with wheat stem rust resistance. The QTL on chromosome 3B was identified using both field data from Kenya (Pgt Ug99-lineage races) and seedling data from Pgt race MCCF. This QTL potentially corresponds to Sr12 or a new allele of Sr12. The multi-pathogen resistance gene Sr57 located on chromosome 7D is present in PI 362698 according to the diagnostic markers csLv34 and wMAS000003, however a significant QTL was not detected at this locus. The QTLs on chromosomes 2B, 6A, and 6D were identified during seedling trials and are thought to correspond to Sr16, Sr8a, and Sr5, respectively. The QTL identified on chromosome 7A was detected using MCCF seedling data and may be Sr15 or a potentially novel allele of recently detected Ug99 resistance QTLs. CONCLUSIONS: The combination of resistance QTLs found in PI 362698 is like the resistance gene combination present in the broadly resistant cultivar Thatcher. As such, PI 362698 may not be a landrace as previously thought. PI 362698 has been crossed with North Dakota wheat germplasm for future breeding efforts. Additional work is needed to fully understand why the combination of genes present in PI 362698 and 'Thatcher' provide such durable resistance.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Tallos de la Planta/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología , Polimorfismo de Nucleótido Simple , Estaciones del Año , Triticum/microbiología
14.
Hortic Res ; 4: 17062, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29138689

RESUMEN

The cultivated strawberry (Fragaria×ananassa) is consumed worldwide for its flavor and nutritional benefits. Genetic analysis of commercially important traits in strawberry are important for the development of breeding methods and tools for this species. Although several quantitative trait loci (QTL) have been previously detected for fruit quality and flowering traits using low-density genetic maps, clarity on the sub-genomic locations of these QTLs was missing. Recent discoveries in allo-octoploid strawberry genomics led to the development of the IStraw90 single-nucleotide polymorphism (SNP) array, enabling high-density genetic maps and finer resolution QTL analysis. In this study, breeder-specified traits were evaluated in the Eastern (Michigan) and Western (Oregon) United States for a common set of breeding populations during 2 years. Several QTLs were validated for soluble solids content (SSC), fruit weight (FWT), pH and titratable acidity (TA) using a pedigree-based QTL analysis approach. For fruit quality, a QTL for SSC on linkage group (LG) 6A, a QTL for FWT on LG 2BII, a QTL for pH on LG 4CII and two QTLs for TA on LGs 2A and 5B were detected. In addition, a large-effect QTL for flowering was detected at the distal end of LG 4A, coinciding with the FaPFRU locus. Marker haplotype analysis in the FaPFRU region indicated that the homozygous recessive genotype was highly predictive of seasonal flowering. SNP probes in the FaPFRU region may help facilitate marker-assisted selection for this trait.

15.
PeerJ ; 5: e3731, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28875078

RESUMEN

Genotyping-by-sequencing (GBS) was used to survey genome-wide single-nucleotide polymorphisms (SNPs) in three biparental strawberry (Fragaria × ananassa) populations with the goal of evaluating this technique in a species with a complex octoploid genome. GBS sequence data were aligned to the F. vesca 'Fvb' reference genome in order to call SNPs. Numbers of polymorphic SNPs per population ranged from 1,163 to 3,190. Linkage maps consisting of 30-65 linkage groups were produced from the SNP sets derived from each parent. The linkage groups covered 99% of the Fvb reference genome, with three to seven linkage groups from a given parent aligned to any particular chromosome. A phylogenetic analysis performed using the POLiMAPS pipeline revealed linkage groups that were most similar to ancestral species F. vesca for each chromosome. Linkage groups that were most similar to a second ancestral species, F. iinumae, were only resolved for Fvb 4. The quantity of missing data and heterogeneity in genome coverage inherent in GBS complicated the analysis, but POLiMAPS resolved F. × ananassa chromosomal regions derived from diploid ancestor F. vesca.

16.
Theor Appl Genet ; 130(6): 1267-1276, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28293708

RESUMEN

KEY MESSAGE: Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes. Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE-S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE-S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Epistasis Genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Ascomicetos , Mapeo Cromosómico , Genes de Plantas , Genotipo , Enfermedades de las Plantas/microbiología , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...