Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36904048

RESUMEN

Aqueous and ethanolic extracts of tomato pomace were examined with the aim of optimizing the extraction process of compounds with cardioprotective activity. Once the results of the ORAC response variables, total polyphenols, °Brix, and antiplatelet activity of the extracts were obtained, a multivariate statistical analysis was performed using the Statgraphics Centurion XIX software. This analysis showed that the most relevant positive effects in the inhibition of platelet aggregation were 83 ± 2% when using the agonist TRAP-6, when the working conditions were the type of tomato pomace conditioning (drum-drying process at 115 °C), phase ratio (1/8), type of solvent (ethanol 20%), and type of extraction (ultrasound-assisted solid-liquid extraction). The extracts with the best results were microencapsulated and characterized by HPLC. The presence of chlorogenic acid (0.729 mg/mg of dry sample) was found, a compound that has a potential cardioprotective effect documented in various studies, in addition to rutin (2.747 mg/mg of dry sample) and quercetin (0.255 mg/mg of dry sample). These results show that the extraction efficiency of compounds with cardioprotective activity depends largely on the polarity of the solvent, thus playing an important role in the antioxidant capacity of the extracts of tomato pomace.

2.
Nanomaterials (Basel) ; 9(1)2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30609710

RESUMEN

Although biofilm formation is a very effective mechanism to sustain bacterial life, it is detrimental in medical and industrial sectors. Current strategies to control biofilm proliferation are typically based on biocides, which exhibit a negative environmental impact. In the search for environmentally friendly solutions, nanotechnology opens the possibility to control the interaction between biological systems and colonized surfaces by introducing nanostructured coatings that have the potential to affect bacterial adhesion by modifying surface properties at the same scale. In this work, we present a study on the performance of graphene and hexagonal boron nitride coatings (h-BN) to reduce biofilm formation. In contraposition to planktonic state, we focused on evaluating the efficiency of graphene and h-BN at the irreversible stage of biofilm formation, where most of the biocide solutions have a poor performance. A wild Enterobacter cloacae strain was isolated, from fouling found in a natural environment, and used in these experiments. According to our results, graphene and h-BN coatings modify surface energy and electrostatic interactions with biological systems. This nanoscale modification determines a significant reduction in biofilm formation at its irreversible stage. No bactericidal effects were found, suggesting both coatings offer a biocompatible solution for biofilm and fouling control in a wide range of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...