Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(18): 10227-10237, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32352086

RESUMEN

We present an experimental study of the Dynamic Nuclear Polarization (DNP) of 29Si nuclei in silicon crystals of natural abundance doped with As in the temperature range 0.1-1 K and in a strong magnetic field of 4.6 T. This ensures a very high degree of electron spin polarization, extremely slow nuclear relaxation and optimal conditions for realization of Overhauser and resolved solid effects. We found that the solid effect DNP leads to the appearance of a pattern of holes and peaks in the ESR line, separated by the super-hyperfine interaction between the donor electron and 29Si nuclei closest to the donor. On the contrary, the Overhauser effect DNP mainly affects the remote 29Si nuclei having the weakest interaction with the donor electron. This leads to the appearance of a very narrow (≈3 mG wide) hole in the ESR line. We studied relaxation of the holes after burning, which is caused by the nuclear spin diffusion. Analyzing the dynamics of the hole in the spectrum with a simple one-dimensional diffusion model leads to a value of the diffusion coefficient D = 8(3) × 10-9 G2 s-1. Our data indicate that the spin diffusion is not completely prevented even in the frozen core near the donors. The emergence of the narrow hole after the Overhauser DNP may be explained by a partial "softening" of the frozen core caused by decoupling of the donor electron and remote 29Si nuclei.

2.
Phys Chem Chem Phys ; 18(42): 29600-29606, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27752662

RESUMEN

We report on a study of the exchange tunneling reaction D + HD → D2 + H in a pure solid HD matrix and in a D2 matrix with a 0.23% HD admixture at temperatures between 130 mK and 1.5 K. We found that the exchange reaction rates, kexHD ∼ 3 × 10-27 cm3 s-1 in the pure HD matrix, and kexD2 = 9(4) × 10-28 cm3 s-1 in the D2 matrix, are nearly independent of temperature within this range. This confirms the quantum tunnelling nature of these reactions, and their ability to proceed at temperatures down to absolute zero. Based on these observations we concluded that exchange tunneling reaction H + H2 → H2 + H should also proceed in a H2 matrix at the lowest temperatures. On the other hand, the recombination of H atoms in solid H2 and D atoms in solid D2 is substantially suppressed at the lowest temperatures as a result of a decreased probability of resonant tunneling of atoms when they approach each other.

3.
Phys Rev Lett ; 114(12): 125304, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25860755

RESUMEN

We report on experimental observation of Bose-Einstein condensation (BEC)-like behavior of quantized electron spin waves (magnons) in a dense gas of spin-polarized atomic hydrogen. The magnons are trapped and controlled with inhomogeneous magnetic fields and described by a Schrödinger-like wave equation, in analogy to the BEC experiments with neutral atoms. We have observed the appearance of a sharp feature in the ESR spectrum displaced from the normal spin wave spectrum. We believe that this observation corresponds to a sudden growth of the ground-state population of the magnons and emergence of their spontaneous coherence for hydrogen gas densities exceeding a critical value, dependent on the trapping potential. We interpret the results as a BEC of nonequilibrium magnons which were formed by applying the rf power.

4.
Rev Sci Instrum ; 85(5): 053902, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24880382

RESUMEN

We present the design and performance of an experimental cell constructed for matrix isolation studies of H and D atoms in solid H2/D2 films, which are created by molecular beam deposition at temperatures below 1 K. The sample cell allows sensitive weighing of the films by a quartz microbalance (QM) and their studies by magnetic resonance techniques in a strong magnetic field of 4.6 T. We are able to regulate the deposition rate in the range from 0.01 to 10 molecular layers/s, and measure the thickness with ≈0.2 monolayer resolution. The upper QM electrode serves as a mirror for a 128 GHz Fabry-Perot resonator connected to an electron spin resonance (ESR) spectrometer. H and D atoms were created by RF discharge in situ in the sample cell, and characterized by ESR and electron-nuclear double resonance. From the magnetic resonance measurements we conclude that the films are smooth and provide homogeneous trapping conditions for embedded atoms. The current sample cell design also makes it possible to calibrate the ESR signal and estimate the average and local concentrations of H and D radicals in the film.

5.
Phys Rev Lett ; 113(26): 265303, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25615349

RESUMEN

We report on magnetic resonance studies of high-density atomic hydrogen and deuterium in solid hydrogen matrices at temperatures below 1 K. Average concentrations of H atoms ≈3×10(19) cm(-3) are obtained in chemical tunneling reactions of isotope exchange with D atoms. The products of these reactions are closely located pairs of H atoms near D2 molecules with strong exchange interactions. We discovered a dynamic nuclear polarization effect on H atoms created by pumping the center of the H electron spin resonance spectrum, similar to the Overhauser effect in metals. Our results indicate that H atoms may be arranged inside molecular matrices at separations equivalent to local concentrations of 2.6×10(21) cm(-3). This opens up a way to build a metallic state of atomic hydrogen at zero pressure.

6.
Phys Rev Lett ; 108(18): 185304, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22681088

RESUMEN

We present a high magnetic field study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼10(18) cm(-3) at temperatures ranging from 0.26 to 0.6 K. We observed a variety of spin wave modes caused by the identical spin rotation effect with strong dependence on the spatial profile of the polarizing magnetic field. We demonstrate confinement of these modes in regions of strong magnetic field and manipulate their spatial distribution by changing the position of the field maximum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...