Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
PLoS One ; 19(6): e0306006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905233

RESUMEN

To understand the neurocognitive mechanisms that underlie heterogeneity in cognitive ageing, recent scientific efforts have led to a growing public availability of imaging cohort data. The Advanced BRain Imaging on ageing and Memory (ABRIM) project aims to add to these existing datasets by taking an adult lifespan approach to provide a cross-sectional, normative database with a particular focus on connectivity, myelinization and iron content of the brain in concurrence with cognitive functioning, mechanisms of reserve, and sleep-wake rhythms. ABRIM freely shares MRI and behavioural data from 295 participants between 18-80 years, stratified by age decade and sex (median age 52, IQR 36-66, 53.20% females). The ABRIM MRI collection consists of both the raw and pre-processed structural and functional MRI data to facilitate data usage among both expert and non-expert users. The ABRIM behavioural collection includes measures of cognitive functioning (i.e., global cognition, processing speed, executive functions, and memory), proxy measures of cognitive reserve (e.g., educational attainment, verbal intelligence, and occupational complexity), and various self-reported questionnaires (e.g., on depressive symptoms, pain, and the use of memory strategies in daily life and during a memory task). In a sub-sample (n = 120), we recorded sleep-wake rhythms using an actigraphy device (Actiwatch 2, Philips Respironics) for a period of 7 consecutive days. Here, we provide an in-depth description of our study protocol, pre-processing pipelines, and data availability. ABRIM provides a cross-sectional database on healthy participants throughout the adult lifespan, including numerous parameters relevant to improve our understanding of cognitive ageing. Therefore, ABRIM enables researchers to model the advanced imaging parameters and cognitive topologies as a function of age, identify the normal range of values of such parameters, and to further investigate the diverse mechanisms of reserve and resilience.


Asunto(s)
Envejecimiento , Encéfalo , Imagen por Resonancia Magnética , Memoria , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Anciano de 80 o más Años , Adolescente , Envejecimiento/fisiología , Adulto Joven , Memoria/fisiología , Cognición/fisiología , Estudios Transversales , Neuroimagen/métodos , Proyectos de Investigación , Recolección de Datos
2.
Neuroimage Clin ; 40: 103542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37988996

RESUMEN

BACKGROUND: Disruptive behavior in children and adolescents can manifest as reactive aggression and proactive aggression and is modulated by callous-unemotional traits and other comorbidities. Neural correlates of these aggression dimensions or subtypes and comorbid symptoms remain largely unknown. This multi-center study investigated the relationship between resting state functional connectivity (rsFC) and aggression subtypes considering comorbidities. METHODS: The large sample of children and adolescents aged 8-18 years (n = 207; mean age = 13.30±2.60 years, 150 males) included 118 cases with disruptive behavior (80 with Oppositional Defiant Disorder and/or Conduct Disorder) and 89 controls. Attention-deficit/hyperactivity disorder (ADHD) and anxiety symptom scores were analyzed as covariates when assessing group differences and dimensional aggression effects on hypothesis-free global and local voxel-to-voxel whole-brain rsFC based on functional magnetic resonance imaging at 3 Tesla. RESULTS: Compared to controls, the cases demonstrated altered rsFC in frontal areas, when anxiety but not ADHD symptoms were controlled for. For cases, reactive and proactive aggression scores were related to global and local rsFC in the central gyrus and precuneus, regions linked to aggression-related impairments. Callous-unemotional trait severity was correlated with ICC in the inferior and middle temporal regions implicated in empathy, emotion, and reward processing. Most observed aggression subtype-specific patterns could only be identified when ADHD and anxiety were controlled for. CONCLUSIONS: This study clarifies that hypothesis-free brain connectivity measures can disentangle distinct though overlapping dimensions of aggression in youths. Moreover, our results highlight the importance of considering comorbid symptoms to detect aggression-related rsFC alterations in youths.


Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Masculino , Niño , Adolescente , Humanos , Trastorno de la Conducta/diagnóstico por imagen , Agresión/psicología , Emociones , Encéfalo/diagnóstico por imagen
3.
Psychol Med ; 53(9): 4012-4021, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35450543

RESUMEN

BACKGROUND: Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities. METHODS: We combined two novel approaches. First, normative modeling to map deviations from the typical age-related pattern at the level of the individual of (i) activity during emotion matching and (ii) of anatomical images derived from DBD cases (n = 77) and controls (n = 52) aged 8-18 years from the EU-funded Aggressotype and MATRICS consortia. Second, linked independent component analysis to integrate subject-specific deviations from both modalities. RESULTS: While cases exhibited on average a higher activity than would be expected for their age during face processing in regions such as the amygdala when compared to controls these positive deviations were widespread at the individual level. A multimodal integration of all functional and anatomical deviations explained 23% of the variance in the clinical DBD phenotype. Most notably, the top marker, encompassing the default mode network (DMN) and subcortical regions such as the amygdala and the striatum, was related to aggression across the whole sample. CONCLUSIONS: Overall increased age-related deviations in the amygdala in DBD suggest a maturational delay, which has to be further validated in future studies. Further, the integration of individual deviation patterns from multiple imaging modalities allowed to dissect some of the heterogeneity of DBD and identified the DMN, the striatum and the amygdala as neural signatures that were associated with aggression.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Agresión/psicología , Emociones , Déficit de la Atención y Trastornos de Conducta Disruptiva , Mapeo Encefálico
5.
Neuroimage Clin ; 35: 103057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35644111

RESUMEN

BACKGROUND: Variation in the longitudinal course of childhood attention deficit/hyperactivity disorder (ADHD) coincides with neurodevelopmental maturation of brain structure and function. Prior work has attempted to determine how alterations in white matter (WM) relate to changes in symptom severity, but much of that work has been done in smaller cross-sectional samples using voxel-based analyses. Using standard diffusion-weighted imaging (DWI) methods, we previously showed WM alterations were associated with ADHD symptom remission over time in a longitudinal sample of probands, siblings, and unaffected individuals. Here, we extend this work by further assessing the nature of these changes in WM microstructure by including an additional follow-up measurement (aged 18 - 34 years), and using the more physiologically informative fixel-based analysis (FBA). METHODS: Data were obtained from 139 participants over 3 clinical and 2 follow-up DWI waves, and analyzed using FBA in regions-of-interest based on prior findings. We replicated previously reported significant models and extended them by adding another time-point, testing whether changes in combined ADHD and hyperactivity-impulsivity (HI) continuous symptom scores are associated with fixel metrics at follow-up. RESULTS: Clinical improvement in HI symptoms over time was associated with more fiber density at follow-up in the left corticospinal tract (lCST) (tmax = 1.092, standardized effect[SE] = 0.044, pFWE = 0.016). Improvement in combined ADHD symptoms over time was associated with more fiber cross-section at follow-up in the lCST (tmax = 3.775, SE = 0.051, pFWE = 0.019). CONCLUSIONS: Aberrant white matter development involves both lCST micro- and macrostructural alterations, and its path may be moderated by preceding symptom trajectory.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Estudios Transversales , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Sustancia Blanca/diagnóstico por imagen
6.
Eur Child Adolesc Psychiatry ; 31(1): 51-66, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33147348

RESUMEN

Disruptive behavior during childhood and adolescence is heterogeneous and associated with several psychiatric disorders. The identification of more homogeneous subgroups might help identify different underlying pathways and tailor treatment strategies. Children and adolescents (aged 8-18) with disruptive behaviors (N = 121) and healthy controls (N = 100) were included in a European multi-center cognition and brain imaging study. They were assessed via a battery of standardized semi-structured interviews and questionnaires. K-means cluster-model analysis was carried out to identify subgroups within the group with disruptive behaviors, based on clinical symptom profiles, callous-unemotional (CU) traits, and proactive and reactive aggression. The resulting subgroups were then compared to healthy controls with regard to these clinical variables. Three distinct subgroups were found within the group with disruptive behaviors. The High CU Traits subgroup presented elevated scores for CU traits, proactive aggression and conduct disorder (CD) symptoms, as well as a higher proportion of comorbidities (CD + oppositional defiant disorder + attention deficit hyperactivity disorder (ADHD). The ADHD and Affective Dysregulation subgroup showed elevated scores for internalizing and ADHD symptoms, as well as a higher proportion of females. The Low Severity subgroup had relatively low levels of psychopathology and aggressive behavior compared to the other two subgroups. The High CU Traits subgroup displayed more antisocial behaviors than the Low Severity subgroup, but did not differ when compared to the ADHD and Affective Dysregulation subgroup. All three subgroups differed significantly from the healthy controls in all the variables analyzed. The present study extends previous findings on subgrouping children and adolescents with disruptive behaviors using a multidimensional approach and describes levels of anxiety, affective problems, ADHD, proactive aggression and CU traits as key factors that differentiate conclusively between subgroups.


Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Adolescente , Agresión , Trastorno de Personalidad Antisocial , Déficit de la Atención y Trastornos de Conducta Disruptiva , Niño , Emociones , Femenino , Humanos
7.
Artículo en Inglés | MEDLINE | ID: mdl-33054990

RESUMEN

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by age-inappropriate levels of inattention and/or hyperactivity-impulsivity. ADHD has been related to differences in white matter (WM) microstructure. However, much remains unclear regarding the nature of these WM differences and which clinical aspects of ADHD they reflect. We systematically investigated whether fractional anisotropy (FA) is associated with current and/or lifetime categorical diagnosis, impairment in daily life, and continuous ADHD symptom measures. METHODS: Diffusion-weighted imaging data were obtained from 654 participants (322 unaffected, 258 affected, 74 subthreshold; 7-29 years of age). We applied automated global probabilistic tractography on 18 major WM pathways. Linear mixed-effects regression models were used to examine associations of clinical measures with overall brain and tract-specific FA. RESULTS: There were significant interactions of tract with all ADHD variables on FA. There were no significant associations of FA with current or lifetime diagnosis, nor with impairment. Lower FA in the right cingulum angular bundle was associated with higher hyperactivity-impulsivity symptom severity (pfamilywise error = .045). There were no significant effects for other tracts. CONCLUSIONS: This is the first time global probabilistic tractography has been applied to an ADHD dataset of this size. We found no evidence for altered FA in association with ADHD diagnosis. Our findings indicate that associations of FA with ADHD are not uniformly distributed across WM tracts. Continuous symptom measures of ADHD may be more sensitive to FA than diagnostic categories. The right cingulum angular bundle in particular may play a role in symptoms of hyperactivity and impulsivity.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Encéfalo , Imagen de Difusión Tensora/métodos , Humanos , Conducta Impulsiva
8.
Psychol Med ; 52(3): 476-484, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32624021

RESUMEN

BACKGROUND: Brain imaging studies have shown altered amygdala activity during emotion processing in children and adolescents with oppositional defiant disorder (ODD) and conduct disorder (CD) compared to typically developing children and adolescents (TD). Here we aimed to assess whether aggression-related subtypes (reactive and proactive aggression) and callous-unemotional (CU) traits predicted variation in amygdala activity and skin conductance (SC) response during emotion processing. METHODS: We included 177 participants (n = 108 cases with disruptive behaviour and/or ODD/CD and n = 69 TD), aged 8-18 years, across nine sites in Europe, as part of the EU Aggressotype and MATRICS projects. All participants performed an emotional face-matching functional magnetic resonance imaging task. RESULTS: Differences between cases and TD in affective processing, as well as specificity of activation patterns for aggression subtypes and CU traits, were assessed. Simultaneous SC recordings were acquired in a subsample (n = 63). Cases compared to TDs showed higher amygdala activity in response to negative faces (fearful and angry) v. shapes. Subtyping cases according to aggression-related subtypes did not significantly influence on amygdala activity; while stratification based on CU traits was more sensitive and revealed decreased amygdala activity in the high CU group. SC responses were significantly lower in cases and negatively correlated with CU traits, reactive and proactive aggression. CONCLUSIONS: Our results showed differences in amygdala activity and SC responses to emotional faces between cases with ODD/CD and TD, while CU traits moderate both central (amygdala) and peripheral (SC) responses. Our insights regarding subtypes and trait-specific aggression could be used for improved diagnostics and personalized treatment.


Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Adolescente , Agresión/psicología , Amígdala del Cerebelo/diagnóstico por imagen , Déficit de la Atención y Trastornos de Conducta Disruptiva , Niño , Emociones/fisiología , Humanos
9.
Sci Rep ; 11(1): 22205, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772996

RESUMEN

Research into the effect of nutrition on attention-deficit hyperactivity disorder (ADHD) in children has shown that the few-foods diet (FFD) substantially decreases ADHD symptoms in 60% of children. However, the underlying mechanism is unknown. In this open-label nutritional intervention study we investigated whether behavioural changes after following an FFD are associated with changes in brain function during inhibitory control in 79 boys with ADHD, aged 8-10 years. Parents completed the ADHD Rating Scale before (t1) and after the FFD (t2). Functional magnetic resonance imaging (fMRI) scans were acquired during a stop-signal task at t1 and t2, and initial subject-level analyses were done blinded for ARS scores. Fifty (63%) participants were diet responders, showing a decrease of ADHD symptoms of at least 40%. Fifty-three children had fMRI scans of sufficient quality for further analysis. Region-of-interest analyses demonstrated that brain activation in regions implicated in the stop-signal task was not associated with ADHD symptom change. However, whole-brain analyses revealed a correlation between ADHD symptom decrease and increased precuneus activation (pFWE(cluster) = 0.015 for StopSuccess > Go trials and pFWE(cluster) < 0.001 for StopSuccess > StopFail trials). These results provide evidence for a neurocognitive mechanism underlying the efficacy of a few-foods diet in children with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/etiología , Encéfalo/fisiopatología , Dieta , Trastorno por Déficit de Atención con Hiperactividad/terapia , Encéfalo/diagnóstico por imagen , Niño , Comorbilidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Evaluación de Síntomas
10.
Psychiatry Res ; 298: 113795, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33582524

RESUMEN

Reversal learning deficits following reward and punishment processing are observed across disruptive behaviors (DB) and attention-deficit/hyperactivity disorder (ADHD), and have been associated with callous-unemotional (CU) traits. However, it remains unknown to what extent these altered reinforcement sensitivities are linked to the co-occurrence of oppositional traits, ADHD symptoms, and CU traits. Reward and punishment sensitivity and perseverative behavior were therefore derived from a probabilistic reversal learning task to investigate reinforcement sensitivity in participants with DB (n=183, ODD=62, CD=10, combined=57, age-range 8-18), ADHD (n=144, age-range 11-28), and controls (n=191, age-range 8-26). The SNAP-IV and Conners rating scales were used to assess oppositional and ADHD traits. The Inventory of CU traits was used to assess CU traits. Decreased reward sensitivity was associated with ADHD symptom severity (p=0.018) if corrected for oppositional symptoms. ADHD symptomatology interacted with oppositional behavior on perseveration (p=0.019), with the former aggravating the effect of oppositional behavior on perseveration and vice versa. Within a pooled sample, reversal learning alterations were associated with the severity of ADHD symptoms, underpinned by hyposensitivity to reward and increased perseveration. These results show ADHD traits, as opposed to oppositional behavior and CU traits, is associated with decreased reward-based learning in adolescents and adults.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno de la Conducta , Adolescente , Déficit de la Atención y Trastornos de Conducta Disruptiva , Humanos , Castigo , Recompensa
11.
Artículo en Inglés | MEDLINE | ID: mdl-33097470

RESUMEN

BACKGROUND: Autism spectrum disorder ("autism") is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, but its potential as a neural stratification marker has not been widely examined. METHODS: In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS (European Autism Interventions-A Multicentre Study for Developing New Medications) Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical control subjects as well as a replication dataset from ABIDE (Autism Brain Imaging Data Exchange) (513 individuals with autism, 691 neurotypical subjects) using a promising approach that moves beyond mean group comparisons. We derived gray matter voxelwise laterality values for each subject and modeled individual deviations from the normative pattern of brain laterality across age using normative modeling. RESULTS: Individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language, motor, and visuospatial regions, associated with symptom severity. Language delay explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged, with individuals with autism with language delay showing more pronounced rightward deviations than individuals with autism without language delay. CONCLUSIONS: Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism and indicate that atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Encéfalo , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética
12.
Front Neuroinform ; 15: 770608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095452

RESUMEN

Analyses of brain function and anatomy using shared neuroimaging data is an important development, and have acquired the potential to be scaled up with the specification of a new Brain Imaging Data Structure (BIDS) standard. To date, a variety of software tools help researchers in converting their source data to BIDS but often require programming skills or are tailored to specific institutes, data sets, or data formats. In this paper, we introduce BIDScoin, a cross-platform, flexible, and user-friendly converter that provides a graphical user interface (GUI) to help users finding their way in BIDS standard. BIDScoin does not require programming skills to be set up and used and supports plugins to extend their functionality. In this paper, we show its design and demonstrate how it can be applied to a downloadable tutorial data set. BIDScoin is distributed as free and open-source software to foster the community-driven effort to promote and facilitate the use of BIDS standard.

13.
JCPP Adv ; 1(3)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35434717

RESUMEN

Background: Attention-deficit hyperactivity disorder (ADHD) is associated with white matter (WM) microstructure. Our objective was to investigate how WM microstructure is longitudinally related to symptom remission in adolescents and young adults with ADHD. Methods: We obtained diffusion-weighted imaging (DWI) data from 99 participants at two timepoints (mean age baseline: 16.91 years, mean age follow-up: 20.57 years). We used voxel-wise Tract-Based Spatial Statistics (TBSS) with permutation-based inference to investigate associations of inattention (IA) and hyperactivity-impulsivity (HI) symptom change with fractional anisotropy (FA) at baseline, follow-up, and change between time-points. Results: Remission of combined HI and IA symptoms was significantly associated with reduced FA at follow-up in the left superior longitudinal fasciculus and the left corticospinal tract (CST; P FWE = 0.038 and P FWE = 0.044, respectively), mainly driven by an association between HI remission and follow-up CST FA (P FWE = 0.049). There was no significant association of combined symptom decrease with FA at baseline or with changes in FA between the two assessments. Conclusions: In this longitudinal DWI study of ADHD using dimensional symptom scores, we show that greater symptom decrease is associated with lower follow-up FA in specific WM tracts. Altered FA thus may appear to follow, rather than precede, changes in symptom remission. Our findings indicate divergent WM developmental trajectories between individuals with persistent and remittent ADHD, and support the role of prefrontal and sensorimotor tracts in the remission of ADHD.

14.
Eur Child Adolesc Psychiatry ; 30(8): 1237-1249, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32789793

RESUMEN

There is increasing evidence for altered brain resting state functional connectivity in adolescents with disruptive behavior. While a considerable body of behavioral research points to differences between reactive and proactive aggression, it remains unknown whether these two subtypes have dissociable effects on connectivity. Additionally, callous-unemotional traits are important specifiers in subtyping aggressive behavior along the affective dimension. Accordingly, we examined associations between two aggression subtypes along with callous-unemotional traits using a seed-to-voxel approach. Six functionally relevant seeds were selected to probe the salience and the default mode network, based on their presumed role in aggression. The resting state sequence was acquired from 207 children and adolescents of both sexes [mean age (standard deviation) = 13.30 (2.60); range = 8.02-18.35] as part of a Europe-based multi-center study. One hundred eighteen individuals exhibiting disruptive behavior (conduct disorder/oppositional defiant disorder) with varying comorbid attention-deficit/hyperactivity disorder (ADHD) symptoms were studied, together with 89 healthy controls. Proactive aggression was associated with increased left amygdala-precuneus coupling, while reactive aggression related to hyper-connectivities of the posterior cingulate cortex (PCC) to the parahippocampus, the left amygdala to the precuneus and to hypo-connectivity between the right anterior insula and the nucleus caudate. Callous-unemotional traits were linked to distinct hyper-connectivities to frontal, parietal, and cingulate areas. Additionally, compared to controls, cases demonstrated reduced connectivity of the PCC and left anterior insula to left frontal areas, the latter only when controlling for ADHD scores. Taken together, this study revealed aggression-subtype-specific patterns involving areas associated with emotion, empathy, morality, and cognitive control.


Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Adolescente , Agresión , Amígdala del Cerebelo , Déficit de la Atención y Trastornos de Conducta Disruptiva , Niño , Trastorno de la Conducta/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
15.
Neuroimage Clin ; 28: 102403, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32949876

RESUMEN

Attention-Deficit/Hyperactivity Disorder (ADHD) has been associated with altered brain anatomy in neuroimaging studies. However, small and heterogeneous study samples, and the use of region-of-interest and tissue-specific analyses have limited the consistency and replicability of these effects. We used a data-driven multivariate approach to investigate neuroanatomical features associated with ADHD in two independent cohorts: the Dutch NeuroIMAGE cohort (n = 890, 17.2 years) and the Brazilian IMpACT cohort (n = 180, 44.2 years). Using independent component analysis of whole-brain morphometry images, 375 neuroanatomical components were assessed for association with ADHD. In both discovery (corrected-p = 0.0085) and replication (p = 0.032) cohorts, ADHD was associated with reduced volume in frontal lobes, striatum, and their interconnecting white-matter. Current results provide further evidence for the role of the fronto-striatal circuit in ADHD in children, and for the first time show its relevance to ADHD in adults. The fact that the cohorts are from different continents and comprise different age ranges highlights the robustness of the findings.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Brasil , Niño , Sustancia Gris , Humanos , Longevidad , Imagen por Resonancia Magnética
16.
Neuroimage Clin ; 27: 102344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32702625

RESUMEN

Maladaptive aggression, as present in conduct disorder (CD) and, to a lesser extent, oppositional defiant disorder (ODD), has been associated with structural alterations in various brain regions, such as ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), amygdala, insula and ventral striatum. Although aggression can be subdivided into reactive and proactive subtypes, no neuroimaging studies have yet investigated if any structural brain alterations are associated with either of the subtypes specifically. Here we investigated associations between aggression subtypes, CU traits and ADHD symptoms in predefined regions of interest. T1-weighted magnetic resonance images were acquired from 158 children and adolescents with disruptive behavior (ODD/CD) and 96 controls in a multi-center study (aged 8-18). Aggression subtypes were assessed by questionnaires filled in by participants and their parents. Cortical volume and subcortical volumes and shape were determined using Freesurfer and the FMRIB integrated registration and segmentation tool. Associations between volumes and continuous measures of aggression were established using multilevel linear mixed effects models. Proactive aggression was negatively associated with amygdala volume (b = -10.7, p = 0.02), while reactive aggression was negatively associated with insula volume (b = -21.7, p = 0.01). No associations were found with CU traits or ADHD symptomatology. Classical group comparison showed that children and adolescents with disruptive behavior had smaller volumes than controls in (bilateral) vmPFC (p = 0.003) with modest effect size and a reduced shape in the anterior part of the left ventral striatum (p = 0.005). Our study showed negative associations between reactive aggression and volumes in a region involved in threat responsivity and between proactive aggression and a region linked to empathy. This provides evidence for aggression subtype-specific alterations in brain structure which may provide useful insights for clinical practice.


Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Adolescente , Agresión , Amígdala del Cerebelo , Déficit de la Atención y Trastornos de Conducta Disruptiva/diagnóstico por imagen , Niño , Trastorno de la Conducta/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
17.
Cortex ; 121: 135-146, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31622899

RESUMEN

Disruptive behavior is associated with societally and personally problematic levels of aggression and has been linked to abnormal structure and function of fronto-amygdala-striatal regions. Abnormal glutamatergic signalling within this network may play a role in aggression. However, disruptive behavior does not represent a homogeneous construct, but can be fractionated across several dimensions. Of particular interest, callous-unemotional (CU) traits have been shown to modulate the severity, neural and behavioural characterisation, and therapeutic outcomes of disruptive behaviour disorders (DBDs) and aggression. Further, individuals showing disruptive behavior differ to the extent that they engage in subtypes of aggression (i.e., proactive [PA] and reactive aggression [RA]) which may also represent distinct therapeutic targets. Here we investigated how glutamate signalling within the fronto-amygdala-striatal circuitry was altered along these dimensions in youths showing disruptive behavior (n = 140) and typically developing controls (TD, n = 93) within the age-range of 8-18 years. We used proton magnetic resonance spectroscopy (1H-MRS) in the anterior cingulate cortex (ACC), striatum, amygdala and insula and associated glutamate concentrations with continuous measures of aggression and CU-traits using linear mixed-effects models. We found evidence of a dissociation for the different measures and glutamate concentrations. CU traits were associated with increased ACC glutamate ('callousness': b = .19, t (108) = 2.63, p = .01, r = .25; 'uncaring': b = .18, t (108) = 2.59, p = .011, r = .24) while PA was associated with decreased striatal glutamate concentration (b = -.23, t (28) = -3.02, p = .005, r = .50). These findings suggest dissociable correlates of CU traits and PA in DBDs, and indicate that the ACC and striatal glutamate may represent novel pharmacological targets in treating these different aspects.


Asunto(s)
Agresión/psicología , Emociones/fisiología , Empatía/fisiología , Problema de Conducta , Adolescente , Amígdala del Cerebelo/fisiopatología , Niño , Cuerpo Estriado/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
18.
Neuroimage Clin ; 23: 101851, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31077980

RESUMEN

OBJECTIVES: Neuroimaging studies have independently demonstrated brain anatomical and functional impairments in participants with ADHD. The aim of the current study was to explore the relationship between structural and functional brain alterations in ADHD through an integrated analysis of multimodal neuroimaging data. METHODS: We performed a multimodal analysis to integrate resting-state functional magnetic resonance imaging (MRI), structural MRI, and diffusion-weighted imaging data in a large, single-site sample of children with and without diagnosis for ADHD. The inferred subject contributions were fed into regression models to investigate the relationships between diagnosis, symptom severity, gender, and age. RESULTS: Compared with controls, children with ADHD diagnosis showed altered white matter microstructure in widespread white matter fiber tracts as well as greater gray matter volume (GMV) in bilateral frontal regions, smaller GMV in posterior regions, and altered functional connectivity (FC) in default mode and fronto-parietal networks. Age-related growth of GMV of bilateral occipital lobe, FC in frontal regions as well as age-related decline of GMV in medial regions seen in controls appeared reversed in children with ADHD. In the whole group, higher symptom severity was related to smaller GMV in widespread regions in bilateral frontal, parietal, and temporal lobes, as well as greater GMV in intracalcarine and temporal cortices. CONCLUSIONS: Through a multimodal analysis approach we show that structural and functional alterations in brain regions known to be altered in subjects with ADHD from unimodal studies are linked across modalities. The brain alterations were related to clinical features of ADHD, including disorder status, age, and symptom severity.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Imagen de Difusión por Resonancia Magnética/tendencias , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/psicología , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Estudios Transversales , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Masculino
19.
IEEE/ACM Trans Comput Biol Bioinform ; 16(5): 1508-1514, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31135366

RESUMEN

Genome-wide association studies (GWAS) link full genome data to a handful of traits. However, in neuroimaging studies, there is an almost unlimited number of traits that can be extracted for full image-wide big data analyses. Large populations are needed to achieve the necessary power to detect statistically significant effects, emphasizing the need to pool data across multiple studies. Neuroimaging consortia, e.g., ENIGMA and CHARGE, are now analyzing MRI data from over 30,000 individuals. Distributed processing protocols extract harmonized features at each site, and pool together only the cohort statistics using meta analysis to avoid data sharing. To date, such MRI projects have focused on single measures such as hippocampal volume, yet voxelwise analyses (e.g., tensor-based morphometry; TBM) may help better localize statistical effects. This can lead to $10^{13}$1013 tests for GWAS and become underpowered. We developed an analytical framework for multi-site TBM by performing multi-channel registration to cohort-specific templates. Our results highlight the reliability of the method and the added power over alternative options while preserving single site specificity and opening the doors for well-powered image-wide genome-wide discoveries.


Asunto(s)
Biología Computacional/métodos , Estudio de Asociación del Genoma Completo/métodos , Neuroimagen/métodos , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
20.
Am J Psychiatry ; 176(7): 531-542, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31014101

RESUMEN

OBJECTIVE: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. METHODS: Cortical thickness and surface area (based on the Desikan-Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). RESULTS: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen's d=-0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. CONCLUSIONS: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Adolescente , Adulto , Factores de Edad , Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Estudios de Casos y Controles , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Escalas de Valoración Psiquiátrica , Factores Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...