Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Psychiatry ; 27(10): 4274-4284, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35869271

RESUMEN

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) which ultimately forms plaques. These Aß deposits can be induced in APP transgenic mouse models by prion-like seeding. It has been widely accepted that anosmia and hyposmia occur during the early stages of AD, even before cognitive deficits are present. In order to determine the impact of seed-induced Aß deposits on olfaction, we performed intracerebral injections of seed-competent brain homogenate into the olfactory bulb of young pre-depositing APP transgenic mice. Remarkably, we observed a dramatic olfactory impairment in those mice. Furthermore, the number of newborn neurons as well as the activity of cells in the mitral cell layer was decreased. Notably, exposure to an enriched environment reduced Aß seeding, vivified neurogenesis and most importantly reversed olfactory deficits. Based on our findings, we conclude that altered neuronal function as a result of induced Aß pathology might contribute to olfactory dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/patología , Olfato , Péptidos beta-Amiloides , Ratones Transgénicos , Modelos Animales de Enfermedad , Neuronas/patología , Precursor de Proteína beta-Amiloide/genética
2.
Brain Pathol ; 32(3): e13032, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34713522

RESUMEN

Several degenerative brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the simultaneous appearance of amyloid-ß (Aß) and α-synuclein (α-syn) pathologies and symptoms that are similar, making it difficult to differentiate between these diseases. Until now, an accurate diagnosis can only be made by postmortem analysis. Furthermore, the role of α-syn in Aß aggregation and the arising characteristic olfactory impairments observed during the progression of these diseases is still not well understood. Therefore, we assessed Aß load in olfactory bulbs of APP-transgenic mice expressing APP695KM670/671NL and PSEN1L166P under the control of the neuron-specific Thy-1 promoter (referred to here as APPPS1) and APPPS1 mice co-expressing SNCAA30P (referred to here as APPPS1 × [A30P]aSYN). Furthermore, the olfactory capacity of these mice was evaluated in the buried food and olfactory avoidance test. Our results demonstrate an age-dependent increase in Aß load in the olfactory bulb of APP-transgenic mice that go along with exacerbated olfactory performance. Our study provides clear evidence that the presence of α-syn significantly diminished the endogenous and seed-induced Aß deposits and significantly ameliorated olfactory dysfunction in APPPS1 × [A30P]aSYN mice.


Asunto(s)
Enfermedad de Alzheimer , Sinucleinopatías , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Bulbo Olfatorio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Nat Neurosci ; 25(1): 20-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34811521

RESUMEN

Microglia appear activated in the vicinity of amyloid beta (Aß) plaques, but whether microglia contribute to Aß propagation into unaffected brain regions remains unknown. Using transplantation of wild-type (WT) neurons, we show that Aß enters WT grafts, and that this is accompanied by microglia infiltration. Manipulation of microglia function reduced Aß deposition within grafts. Furthermore, in vivo imaging identified microglia as carriers of Aß pathology in previously unaffected tissue. Our data thus argue for a hitherto unexplored mechanism of Aß propagation.


Asunto(s)
Péptidos beta-Amiloides , Microglía , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Microglía/metabolismo , Neuronas/metabolismo , Placa Amiloide/patología
4.
Neuro Oncol ; 23(11): 1885-1897, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33864086

RESUMEN

BACKGROUND: Glioblastoma cells assemble to a syncytial communicating network based on tumor microtubes (TMs) as ultra-long membrane protrusions. The relationship between network architecture and transcriptional profile remains poorly investigated. Drugs that interfere with this syncytial connectivity such as meclofenamate (MFA) may be highly attractive for glioblastoma therapy. METHODS: In a human neocortical slice model using glioblastoma cell populations of different transcriptional signatures, three-dimensional tumor networks were reconstructed, and TM-based intercellular connectivity was mapped on the basis of two-photon imaging data. MFA was used to modulate morphological and functional connectivity; downstream effects of MFA treatment were investigated by RNA sequencing and fluorescence-activated cell sorting (FACS) analysis. RESULTS: TM-based network morphology strongly differed between the transcriptional cellular subtypes of glioblastoma and was dependent on axon guidance molecule expression. MFA revealed both a functional and morphological demolishment of glioblastoma network architectures which was reflected by a reduction of TM-mediated intercellular cytosolic traffic as well as a breakdown of TM length. RNA sequencing confirmed a downregulation of NCAM and axon guidance molecule signaling upon MFA treatment. Loss of glioblastoma communicating networks was accompanied by a failure in the upregulation of genes that are required for DNA repair in response to temozolomide (TMZ) treatment and culminated in profound treatment response to TMZ-mediated toxicity. CONCLUSION: The capacity of TM formation reflects transcriptional cellular heterogeneity. MFA effectively demolishes functional and morphological TM-based syncytial network architectures. These findings might pave the way to a clinical implementation of MFA as a TM-targeted therapeutic approach.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ácido Meclofenámico/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Humanos , Técnicas In Vitro
5.
Front Mol Neurosci ; 13: 149, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132837

RESUMEN

A growing body of evidence indicates that microglia actively remove synapses in vivo, thereby playing a key role in synaptic refinement and modulation of brain connectivity. This phenomenon was mainly investigated in immunofluorescence staining and confocal microscopy. However, a quantification of synaptic material in microglia using these techniques is extremely time-consuming and labor-intensive. To address this issue, we aimed to quantify synaptic proteins in microglia using flow cytometry. With this approach, we first showed that microglia from the healthy adult mouse brain contain a detectable level of VGLUT1 protein. Next, we found more than two-fold increased VGLUT1 immunoreactivity in microglia from the developing brain (P15) as compared to adult microglia. These data indicate that microglia-mediated synaptic pruning mostly occurs during the brain developmental period. We then quantified the VGLUT1 staining in microglia in two transgenic models characterized by pathological microglia-mediated synaptic pruning. In the 5xFAD mouse model of Alzheimer's disease (AD) microglia exhibited a significant increase in VGLUT1 immunoreactivity before the onset of amyloid pathology. Moreover, conditional deletion of TDP-43 in microglia, which causes a hyper-phagocytic phenotype associated with synaptic loss, also resulted in increased VGLUT1 immunoreactivity within microglia. This work provides a quantitative assessment of synaptic proteins in microglia, under homeostasis, and in mouse models of disease.

6.
Front Aging Neurosci ; 12: 265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061903

RESUMEN

Alzheimer's disease (AD) is pathologically defined by extracellular accumulation of amyloid-ß (Aß) peptides generated by the cleavage of amyloid precursor protein (APP), strings of hyperphosphorylated Tau proteins accumulating inside neurons known as neurofibrillary tangles (NFTs) and neuronal loss. The association between the two hallmarks and cognitive decline has been known since the beginning of the 20th century when the first description of the disease was carried out by Alois Alzheimer. Today, more than 40 million people worldwide are affected by AD that represents the most common cause of dementia and there is still no effective treatment available to cure the disease. In general, the aggregation of Aß is considered an essential trigger in AD pathogenesis that gives rise to NFTs, neuronal dysfunction and dementia. During the process leading to AD, tau and Aß first misfold and form aggregates in one brain region, from where they spread to interconnected areas of the brain thereby inducing its gradual morphological and functional deterioration. In this mini-review article, we present an overview of the current literature on the spreading mechanisms of Aß and tau pathology in AD since a more profound understanding is necessary to design therapeutic approaches aimed at preventing or halting disease progression.

8.
Nat Immunol ; 21(7): 802-815, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32541832

RESUMEN

Microglia and central nervous system (CNS)-associated macrophages (CAMs), such as perivascular and meningeal macrophages, are implicated in virtually all diseases of the CNS. However, little is known about their cell-type-specific roles in the absence of suitable tools that would allow for functional discrimination between the ontogenetically closely related microglia and CAMs. To develop a new microglia gene targeting model, we first applied massively parallel single-cell analyses to compare microglia and CAM signatures during homeostasis and disease and identified hexosaminidase subunit beta (Hexb) as a stably expressed microglia core gene, whereas other microglia core genes were substantially downregulated during pathologies. Next, we generated HexbtdTomato mice to stably monitor microglia behavior in vivo. Finally, the Hexb locus was employed for tamoxifen-inducible Cre-mediated gene manipulation in microglia and for fate mapping of microglia but not CAMs. In sum, we provide valuable new genetic tools to specifically study microglia functions in the CNS.


Asunto(s)
Encéfalo/patología , Encefalomielitis Autoinmune Experimental/patología , Traumatismos del Nervio Facial/patología , Microglía/metabolismo , Cadena beta de beta-Hexosaminidasa/metabolismo , Animales , Encéfalo/citología , Encéfalo/inmunología , Sistemas CRISPR-Cas/genética , Encefalomielitis Autoinmune Experimental/inmunología , Traumatismos del Nervio Facial/inmunología , Técnicas de Sustitución del Gen , Genes Reporteros/genética , Sitios Genéticos/genética , Humanos , Microscopía Intravital , Sustancias Luminiscentes/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microglía/inmunología , Células 3T3 NIH , RNA-Seq , Análisis de la Célula Individual , Transfección , Cadena beta de beta-Hexosaminidasa/genética , Proteína Fluorescente Roja
9.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31249133

RESUMEN

When it comes to the human brain, models that closely mimic in vivo conditions are lacking. Living neuronal tissue is the closest representation of the in vivo human brain outside of a living person. Here, we present a method that can be used to maintain therapeutically resected healthy neuronal tissue for prolonged periods without any discernible changes in tissue vitality, evidenced by immunohistochemistry, genetic expression, and electrophysiology. This method was then used to assess glioblastoma (GBM) progression in its natural environment by microinjection of patient-derived tumor cells into cultured sections. The result closely resembles the pattern of de novo tumor growth and invasion, drug therapy response, and cytokine environment. Reactive transformation of astrocytes, as an example of the cellular nonmalignant tumor environment, can be accurately simulated with transcriptional differences similar to those of astrocytes isolated from acute GBM specimens. In a nutshell, we present a simple method to study GBM in its physiological environment, from which valuable insights can be gained. This technique can lead to further advancements in neuroscience, neuro-oncology, and pharmacotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Técnicas de Cultivo de Tejidos/métodos , Adulto , Anciano , Anciano de 80 o más Años , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/cirugía , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Movimiento Celular , Proliferación Celular , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Modelos Biológicos , Tejido Nervioso/citología , Tejido Nervioso/metabolismo , Tejido Nervioso/cirugía , Temozolomida/farmacología , Microambiente Tumoral
10.
Immunity ; 50(6): 1482-1497.e7, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31201094

RESUMEN

The skin comprises tissue macrophages as the most abundant resident immune cell type. Their diverse tasks including resistance against invading pathogens, attraction of bypassing immune cells from vessels, and tissue repair require dynamic specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into subsets by adapting single-cell transcriptomics, fate mapping, and imaging. Thereby we identified a phenotypically and transcriptionally distinct subset of prenatally seeded dermal macrophages that self-maintained with very low postnatal exchange by hematopoietic stem cells. These macrophages specifically interacted with sensory nerves and surveilled and trimmed the myelin sheath. Overall, resident dermal macrophages contributed to axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by stepwise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment.


Asunto(s)
Diferenciación Celular/inmunología , Vigilancia Inmunológica , Macrófagos/inmunología , Regeneración Nerviosa , Piel/inmunología , Piel/inervación , Animales , Animales Recién Nacidos , Biomarcadores , Receptor 1 de Quimiocinas CX3C/metabolismo , Dermis/citología , Dermis/inmunología , Dermis/metabolismo , Inmunofenotipificación , Macrófagos/metabolismo , Ratones , Piel/citología
11.
Acta Neuropathol Commun ; 6(1): 44, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855361

RESUMEN

Several studies suggest that women have a higher risk to develop Alzheimer's disease (AD) than men. In particular, the number of pregnancies was shown to be a risk factor for AD and women with several pregnancies on average had an earlier onset of the disease, thus making childbearing a risk factor. However, the impact of being pregnant on Aß plaque pathology and adult neurogenesis still remains elusive. Postmortem analysis revealed that pregnant 5xFAD transgenic mice had significantly more Aß plaques in the hippocampus from G10 onwards and that the number of Ki67 and DCX positive cells dramatically decreased during the postpartum period. Furthermore, 5 months old 5xFAD transgenic mice that also nursed their offsprings for 4 weeks had a similar Aß plaque load than merely pregnant mice, indicating that pregnancy alone is sufficient to elevate Aß plaque levels. Interestingly, housing in an enriched environment reduced the Aß plaque load and vivified neurogenesis. Our results suggest that pregnancy alters Aß plaque deposition in 5xFAD transgenic mice and diminishes the generation of newborn neurons. We conclude that pregnancy alone is sufficient to induce this phenotype that can be reversed upon environmental enrichment.


Asunto(s)
Enfermedad de Alzheimer/enfermería , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Ambiente , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Hipocampo/patología , Humanos , Antígeno Ki-67/metabolismo , Lactancia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Neurogénesis/genética , Neuropéptidos/metabolismo , Placa Amiloide/patología , Embarazo , Presenilina-1/genética , Trisacáridos/metabolismo
12.
EMBO J ; 37(2): 167-182, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29229786

RESUMEN

Alzheimer's disease (AD) is characterized by severe neuronal loss as well as the accumulation of amyloid-ß (Aß), which ultimately leads to plaque formation. Although there is now a general agreement that the aggregation of Aß can be initiated by prion-like seeding, the impact and functional consequences of induced Aß deposits (Aß seeding) on neurons still remain open questions. Here, we find that Aß seeding, representing early stages of plaque formation, leads to a dramatic decrease in proliferation and neurogenesis in two APP transgenic mouse models. We further demonstrate that neuronal cell death occurs primarily in the vicinity of induced Aß deposits culminating in electrophysiological abnormalities. Notably, environmental enrichment and voluntary exercise not only revives adult neurogenesis and reverses memory deficits but, most importantly, prevents Aß seeding by activated, phagocytic microglia cells. Our work expands the current knowledge regarding Aß seeding and the consequences thereof and attributes microglia an important role in diminishing Aß seeding by environmental enrichment.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proliferación Celular , Microglía/metabolismo , Fagocitosis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microglía/patología
13.
PLoS One ; 8(12): e82654, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324819

RESUMEN

Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.


Asunto(s)
Corteza Cerebral/patología , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Médula Espinal/patología , Animales , Corteza Cerebral/metabolismo , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Modelos Animales de Enfermedad , Gliosis , Ratones , Ratones Noqueados , Corteza Motora/metabolismo , Corteza Motora/patología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Células Piramidales/metabolismo , Células Piramidales/patología , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
14.
J Biol Chem ; 287(31): 25782-94, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22669976

RESUMEN

Spinal muscular atrophy is a fatal genetic disease of motoneurons due to loss of full-length survival of motor neuron protein, the main product of the disease gene SMN1. Axonal SMN (a-SMN) is an alternatively spliced isoform of SMN1, generated by retention of intron 3. To study a-SMN function, we generated cellular clones for the expression of the protein in mouse motoneuron-like NSC34 cells. The model was instrumental in providing evidence that a-SMN decreases cell growth and plays an important role in the processes of axon growth and cellular motility. In our conditions, low levels of a-SMN expression were sufficient to trigger the observed biological effects, which were not modified by further increasing the amounts of the expressed protein. Differential transcriptome analysis led to the identification of novel a-SMN-regulated factors, i.e. the transcripts coding for the two chemokines, C-C motif ligands 2 and 7 (CCL2 and CCL7), as well as the neuronal and myotrophic factor, insulin-like growth factor-1 (IGF1). a-SMN-dependent induction of CCL2 and IGF1 mRNAs resulted in increased intracellular levels and secretion of the respective protein products. Induction of CCL2 contributes to the a-SMN effects, mediating part of the action on axon growth and random cell motility, as indicated by chemokine knockdown and re-addition studies. Our results shed new light on a-SMN function and the underlying molecular mechanisms. The data provide a rational framework to understand the role of a-SMN deficiency in the etiopathogenesis of spinal muscular atrophy.


Asunto(s)
Axones/fisiología , Movimiento Celular , Quimiocina CCL2/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neuronas/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Axones/metabolismo , Línea Celular , Proliferación Celular , Forma de la Célula , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Neuronas/metabolismo , Transporte de Proteínas , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/fisiología , Transcripción Genética , Transcriptoma
15.
J Neurochem ; 121(3): 465-74, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22324632

RESUMEN

The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA.


Asunto(s)
Axones/fisiología , Neuronas Motoras/fisiología , Atrofia Muscular Espinal/genética , Mutación/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Secuencia de Aminoácidos , Axones/ultraestructura , Western Blotting , Tamaño de la Célula , Supervivencia Celular , Células Cultivadas , Citoesqueleto/patología , Citoesqueleto/ultraestructura , Técnica del Anticuerpo Fluorescente , Células Híbridas , Microscopía Confocal , Datos de Secuencia Molecular , Neuronas Motoras/ultraestructura , Atrofia Muscular Espinal/patología , Mutación/genética , Mutación Missense/genética , Plásmidos/genética , Fracciones Subcelulares/patología , Fracciones Subcelulares/ultraestructura , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...