Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cardiovasc Toxicol ; 22(7): 655-662, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524907

RESUMEN

Cardiovascular toxicity is the main adverse effect of Doxorubicin (DOX) in cancer patients. microRNAs (miRNAs) are promising biomarkers to identify cardiac injury induced by DOX in breast cancer patients during the subclinical phase. Using RT-qPCR, we compared the expression of circulating miR-208a5p, miR-133a, miR-499a5p, miR-15a, miR-133b, and miR-49a3p in serum samples from DOX-induced cardiotoxicity (case) compared to the non-cardiotoxicity group (control). To further explore the potential roles of these circulating miRNA in cardiotoxicity, we searched the miRTarBase for experimentally validated miRNA-target interactions and performed a functional enrichment analysis based on those interactions. miR-133a was significantly upregulated in case compared to control group. The most relevant pathway regulated by miR-133a was ErbB2 signaling, whose main genes involved are EGFR, ERBB2, and RHOA, which are possibly downregulated by miR133a. The other miRNAs did not show significant differential expression when compared on both groups. The data suggest that miR-133a is associated with DOX-based cardiotoxicity during chemotherapy in breast cancer patients through ErbB2 signaling pathway. Moreover, miR-133a may be a future marker of DOX-induced cardiotoxicity in women with breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Biomarcadores , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Cardiotoxicidad/genética , Doxorrubicina/efectos adversos , Femenino , Humanos , MicroARNs/metabolismo , Transducción de Señal
2.
BMC Genomics ; 23(1): 188, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255809

RESUMEN

BACKGROUND: The repulsive guidance molecule a (RGMa) is a GPI-anchor axon guidance molecule first found to play important roles during neuronal development. RGMa expression patterns and signaling pathways via Neogenin and/or as BMP coreceptors indicated that this axon guidance molecule could also be working in other processes and diseases, including during myogenesis. Previous works from our research group have consistently shown that RGMa is expressed in skeletal muscle cells and that its overexpression induces both nuclei accretion and hypertrophy in muscle cell lineages. However, the cellular components and molecular mechanisms induced by RGMa during the differentiation of skeletal muscle cells are poorly understood. In this work, the global transcription expression profile of RGMa-treated C2C12 myoblasts during the differentiation stage, obtained by RNA-seq, were reported. RESULTS: RGMa treatment could modulate the expression pattern of 2,195 transcripts in C2C12 skeletal muscle, with 943 upregulated and 1,252 downregulated. Among them, RGMa interfered with the expression of several RNA types, including categories related to the regulation of RNA splicing and degradation. The data also suggested that nuclei accretion induced by RGMa could be due to their capacity to induce the expression of transcripts related to 'adherens junsctions' and 'extracellular-cell adhesion', while RGMa effects on muscle hypertrophy might be due to (i) the activation of the mTOR-Akt independent axis and (ii) the regulation of the expression of transcripts related to atrophy. Finally, RGMa induced the expression of transcripts that encode skeletal muscle structural proteins, especially from sarcolemma and also those associated with striated muscle cell differentiation. CONCLUSIONS: These results provide comprehensive knowledge of skeletal muscle transcript changes and pathways in response to RGMa.


Asunto(s)
Proteínas del Tejido Nervioso , Transcriptoma , Proteínas Ligadas a GPI , Humanos , Hipertrofia , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA