Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 204(12): 715, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36400871

RESUMEN

Bacillus subtilis (BS) has been used as an excellent probiotic; however, some BS strains seem to be opportunist pathogens or do not present inhibitory effects in the pathogenic bacteria, so the characterization of BS strains for use in animals is mandatory. This study aimed to select nonpathogenic strains of BS, which can inhibit Salmonella spp., avian pathogenic Escherichia coli (APEC), and Campylobacter jejuni (CJ) using a chicken embryo as a model. We tested nine (9) strains of BS isolated from several sources (named A to I) in in vitro by tests of mucin degradation activity, haemolytic activity, apoptosis, and necrosis in fibroblasts from chickens. After the in vitro test, we tested the remaining seven (7) strains (strains A to G) in a chicken embryo (CE) as an in vivo model and target animal. We inoculated 3 log CFU/CE of each strain via allantoic fluid at the 10th day postincubation (DPI). Each treatment group consisted of eight CEs. At the 17th DPI we checked CE mortality, gross lesions, CE weight, and whether BS strains were still viable. To perform the cytokine, total protein, albumin, and reactive C protein analysis, we collected the CE blood from the allantoic vessel and intestine fragments in the duodenum portion for histomorphometric analysis. After the results in CEs, we tested the inhibition capacity of the selected BS strains for diverse strains of Salmonella  Heidelberg (SH), S. Typhimurium (ST), S. Enteritidis (SE), S. Minnesota (SM), S. Infantis (SI), Salmonella var. monophasic (SVM), APEC and C. jejuni. After the in vitro trial (mucin degradation activity, haemolytic activity, apoptosis, and necrosis), we removed two (2) strains (H and I) that showed ß-haemolysis, mucin degradation, and/or high apoptosis and necrosis effects. Although all strains of BS were viable in CEs at the 17th DPI, we removed four (4) strains (A, B, D, F) once they led to the highest mortality in CEs or a high albumin/protein ratio. C. jejuni inoculated with strain G had greater weight than the commercial strain, which could be further used for egg inoculation with benefits to the CE. From the tests in CEs, we selected the strains C, E, and G for their ability to inhibit pathogenic strains of relevant foodborne pathogens. We found that the inhibition effect was strain dependent. In general, strains E and/or G presented better or similar results than commercial control strains in the inhibition of SH, ST, SI, APEC, and two (2) strains of CJ. In this study, we selected BS strains C, E and G due to their in vitro and in vivo safety and beneficial effects. In addition, we emphasize the value of CE as an in vivo experimental model for assessing BS's safety and possible benefits for poultry and other animals.


Asunto(s)
Campylobacter jejuni , Infecciones por Escherichia coli , Probióticos , Embrión de Pollo , Animales , Pollos/microbiología , Bacillus subtilis , Escherichia coli , Mucinas , Necrosis
2.
Front Cell Dev Biol ; 8: 569729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195200

RESUMEN

Trypanosoma cruzi P21 is a protein secreted by the parasite that plays biological roles directly involved in the progression of Chagas disease. The recombinant protein (rP21) demonstrates biological properties, such as binding to CXCR4 receptors in macrophages, chemotactic activity of immune cells, and inhibiting angiogenesis. This study aimed to verify the effects of rP21 interaction with CXCR4 from non-tumoral cells (MCF-10A) and triple-negative breast cancer cells (MDA-MB-231). Our data showed that the MDA-MB-231 cells expressed higher levels of CXCR4 than did the non-tumor cell lines. Besides, cytotoxicity assays using different concentrations of rP21 showed that the recombinant protein was non-toxic and was able to bind to the cell membranes of both cell lineages. In addition, rP21 reduced the migration and invasion of MDA-MB-231 cells by the downregulation of MMP-9 gene expression. In addition, treatment with rP21 blocked the cell cycle, arresting it in the G1 phase, mainly in MDA-MB-231 cells. Finally, rP21 prevents the chemotaxis and proliferation induced by CXCL12. Our data showed that rP21 binds to the CXCR4 receptors in both cells, downregulates CXCR4 gene expression, and decreases the receptors in the cytoplasm of MDA-MB-231 cells, suggesting CXCR4 internalization. This internalization may explain the desensitization of the receptors in these cells. Thus, rP21 prevents migration, invasion, and progression in MDA-MB-231 cells.

3.
Front Immunol ; 11: 1010, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655546

RESUMEN

Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Malaria/parasitología , Mioblastos/parasitología , Miocardio/patología , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/fisiología , Enfermedad Aguda , Animales , Línea Celular , Interacciones Huésped-Parásitos , Humanos , Evasión Inmune , Péptidos y Proteínas de Señalización Intercelular/genética , Interferón gamma/metabolismo , Malaria/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Carga de Parásitos , Proteínas Protozoarias/genética
4.
Immunobiology ; 225(3): 151904, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31959539

RESUMEN

B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas' disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cγ1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.


Asunto(s)
Actinas/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Caspasa 7/metabolismo , Interacciones Huésped-Patógeno , Fosfolipasa C gamma/metabolismo , Trypanosoma cruzi/inmunología , Muerte Celular , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Humanos , Proteolisis
5.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30670552

RESUMEN

Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii and has been studied for causing neuromuscular disease in dogs and abortions in cattle. It is recognized as one of the main transmissible causes of reproductive failure in cattle and consequent economic losses to the sector. In that sense, this study aimed to evaluate the role of Toll-like receptor 3 (TLR3)-TRIF-dependent resistance against N. caninum infection in mice. We observed that TLR3-/- and TRIF-/- mice presented higher parasite burdens, increased inflammatory lesions, and reduced production of interleukin 12p40 (IL-12p40), tumor necrosis factor (TNF), gamma interferon (IFN-γ), and nitric oxide (NO). Unlike those of T. gondii, N. caninum tachyzoites and RNA recruited TLR3 to the parasitophorous vacuole (PV) and translocated interferon response factor 3 (IRF3) to the nucleus. We also observed that N. caninum upregulated the expression of TRIF in murine macrophages, which in turn upregulated IFN-α and IFN-ß in the presence of the parasite. Furthermore, TRIF-/- infected macrophages produced lower levels of IL-12p40, while exogenous IFN-α replacement was able to completely restore the production of this key cytokine. Our results show that the TLR3-TRIF signaling pathway enhances resistance against N. caninum infection in mice, since it improves Th1 immune responses that result in controlled parasitism and reduced tissue inflammation, which are hallmarks of the disease.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Coccidiosis/inmunología , Coccidiosis/parasitología , Neospora/fisiología , ARN Protozoario/inmunología , Receptor Toll-Like 3/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Coccidiosis/genética , Femenino , Interacciones Huésped-Parásitos , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neospora/genética , Neospora/inmunología , Óxido Nítrico/inmunología , ARN Protozoario/genética , Células TH1/inmunología , Células TH1/parasitología , Receptor Toll-Like 3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA