Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 11: 1647, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849566

RESUMEN

Background: Both supraphysiological and subphysiological testosterone levels are associated with increased cardiovascular risk. Testosterone consumption at supraphysiological doses has been linked to increased blood pressure, left ventricular hypertrophy, vascular dysfunction, and increased levels of inflammatory markers. Activation of the NLRP3 inflammasome contributes to the production of proinflammatory cytokines, leading to cardiovascular dysfunction. We hypothesized that supraphysiological levels of testosterone, via generation of mitochondrial reactive oxygen species (mROS), activates the NLRP3 inflammasome and promotes vascular dysfunction. Methods: Male, 12 week-old C57Bl/6J (WT) and NLRP3 knockout (NLRP3-/-) mice were used. Mice were treated with testosterone propionate [TP (10 mg/kg) in vivo] or vehicle for 30 days. In addition, vessels were incubated with testosterone [Testo (10-6 M, 2 h) in vitro]. Testosterone levels, blood pressure, vascular function (thoracic aortic rings), pro-caspase-1/caspase-1 and interleukin-1ß (IL-1ß) expression, and generation of reactive oxygen species were determined. Results: Testosterone increased contractile responses and reduced endothelium-dependent vasodilation, both in vivo and in vitro. These effects were not observed in arteries from NLRP3-/- mice. Aortas of TP-treated WT mice (in vivo), as well as aortas from WT mice incubated with testo (in vitro), exhibited increased mROS levels and increased caspase-1 and IL-1ß expression. These effects were not observed in arteries from NLRP3-/- mice. Flutamide [Flu, 10-5 M, androgen receptor (AR) antagonist], carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 10-6 M, mitochondrial uncoupler) and MCC950 (MCC950, 10-6 M, a NLRP3 receptor inhibitor) prevented testosterone-induced mROS generation. Conclusion: Supraphysiological levels of testosterone induce vascular dysfunction via mROS generation and NLRP3 inflammasome activation. These events may contribute to increased cardiovascular risk.


Asunto(s)
Andrógenos/toxicidad , Aorta Torácica/efectos de los fármacos , Inflamasomas/agonistas , Mitocondrias/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/agonistas , Especies Reactivas de Oxígeno/metabolismo , Propionato de Testosterona/toxicidad , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatología , Caspasa 1/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Técnicas de Cultivo de Tejidos
2.
Br J Pharmacol ; 174(20): 3527-3541, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27930804

RESUMEN

BACKGROUND AND PURPOSE: Obesity is associated with structural and functional changes in perivascular adipose tissue (PVAT), favouring release of reactive oxygen species (ROS), vasoconstrictor and proinflammatory factors. The cytokine TNF-α induces vascular dysfunction and is produced by PVAT. We tested the hypothesis that obesity-associated PVAT dysfunction was mediated by augmented mitochondrial ROS (mROS) generation due to increased TNF-α production in this tissue. EXPERIMENTAL APPROACH: C57Bl/6J and TNF-α receptor-deficient mice received control or high fat diet (HFD) for 18 weeks. We used pharmacological tools to determine the participation of mROS in PVAT dysfunction. Superoxide anion (O2.- ) and H2 O2 were assayed in PVAT and aortic rings were used to assess vascular function. KEY RESULTS: Aortae from HFD-fed obese mice displayed increased contractions to phenylephrine and loss of PVAT anti-contractile effect. Inactivation of O2.- , dismutation of mitochondria-derived H2 O2 , uncoupling of oxidative phosphorylation and Rho kinase inhibition, decreased phenylephrine-induced contractions in aortae with PVAT from HFD-fed mice. O2.- and H2 O2 were increased in PVAT from HFD-fed mice. Mitochondrial respiration analysis revealed decreased O2 consumption rates in PVAT from HFD-fed mice. TNF-α inhibition reduced H2 O2 levels in PVAT from HFD-fed mice. PVAT dysfunction, i.e. increased contraction to phenylephrine in PVAT-intact aortae, was not observed in HFD-obese mice lacking TNF-α receptors. Generation of H2 O2 was prevented in PVAT from TNF-α receptor deficient obese mice. CONCLUSION AND IMPLICATIONS: TNF-α-induced mitochondrial oxidative stress is a key and novel mechanism involved in obesity-associated PVAT dysfunction. These findings elucidate molecular mechanisms whereby oxidative stress in PVAT could affect vascular function. LINKED ARTICLES: This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.


Asunto(s)
Tejido Adiposo/fisiología , Aorta Torácica/fisiología , Dieta Alta en Grasa , Mitocondrias/metabolismo , Obesidad/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Animales , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores del Factor de Necrosis Tumoral/genética , Vasoconstricción/fisiología
3.
Cardiovasc Diabetol ; 15(1): 119, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27562094

RESUMEN

BACKGROUND: High fat diet (HFD) induces insulin resistance in various tissues, including the vasculature. HFD also increases plasma levels of TNF-α, a cytokine that contributes to insulin resistance and vascular dysfunction. Considering that the enzyme phosphatase and tension homologue (PTEN), whose expression is increased by TNF-α, reduces Akt signaling and, consequently, nitric oxide (NO) production, we hypothesized that PTEN contributes to TNF-α-mediated vascular resistance to insulin induced by HFD. Mechanisms underlying PTEN effects were determined. METHODS: Mesenteric vascular beds were isolated from C57Bl/6J and TNF-α KO mice submitted to control or HFD diet for 18 weeks to assess molecular mechanisms by which TNF-α and PTEN contribute to vascular dysfunction. RESULTS: Vasodilation in response to insulin was decreased in HFD-fed mice and in ex vivo control arteries incubated with TNF-α. TNF-α receptors deficiency and TNF-α blockade with infliximab abolished the effects of HFD and TNF-α on insulin-induced vasodilation. PTEN vascular expression (total and phosphorylated isoforms) was increased in HFD-fed mice. Treatment with a PTEN inhibitor improved insulin-induced vasodilation in HFD-fed mice. TNF-α receptor deletion restored PTEN expression/activity and Akt/eNOS/NO signaling in HFD-fed mice. CONCLUSION: TNF-α induces vascular insulin resistance by mechanisms that involve positive modulation of PTEN and inhibition of Akt/eNOS/NO signaling. Our findings highlight TNF-α and PTEN as potential targets to limit insulin resistance and vascular complications associated with obesity-related conditions.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Arteria Mesentérica Superior/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Infliximab/farmacología , Insulina/metabolismo , Masculino , Arteria Mesentérica Superior/efectos de los fármacos , Arteria Mesentérica Superior/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/farmacología , Vasodilatación , Vasodilatadores/farmacología
4.
Vascul Pharmacol ; 81: 69-74, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26643780

RESUMEN

The mechanisms of action involved in the vasorelaxant effect of gallic acid (GA) were examined in the isolated rat thoracic aorta. GA exerted a relaxant effect in the highest concentrations (0.4-10mM) in both endothelium-intact and endothelium-denuded aortic rings. Pre-incubation with L-NAME, ODQ, calmidazolium, TEA, 4-aminopyridine, and barium chloride significantly reduced the pEC50 values. Moreover, this effect was not modified by indomethacin, wortmannin, PP2, glibenclamide, or paxillin. Pre-incubation of GA (1, 3, and 10mM) in a Ca(2+)-free Krebs solution attenuated CaCl2-induced contractions and blocked BAY K8644-induced vascular contractions, but it did not inhibit a contraction induced by the release of Ca(2+) from the sarcoplasmatic reticulum stores. In addition, a Western blot analysis showed that GA induces phosphorylation of eNOS in rat thoracic aorta. These results suggest that GA induces relaxation in rat aortic rings through an endothelium-dependent pathway, resulting in eNOS phosphorylation and opening potassium channels. Additionally, the relaxant effect by an endothelium-independent pathway involves the blockade of the Ca(2+) influx via L-type Ca(2+) channels.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Ácido Gálico/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta Torácica/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Femenino , Técnicas In Vitro , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Canales de Potasio/agonistas , Canales de Potasio/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA