Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(8): 3200-3211, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35147148

RESUMEN

Recently, a new two-dimensional carbon allotrope named biphenylene network (BPN) was experimentally realized. The BPN structure consists of four-, six-, and eight-membered rings of sp2-hybridized carbon atoms. In this work, we carried out fully-atomistic reactive (ReaxFF) molecular dynamics simulations to study the mechanical properties and fracture patterns of non-defective and defective (nanocracks) BPN. Results show that, under uniaxial tensile loading, BPN is converted into four distinct morphologies before fracture starts. This conversion process is dependent on the stretching direction. Some of the formed structures contain mainly eight-membered rings, which have different shapes in each morphology. In one of them, a graphitization process occurs before the complete fracture. Importantly, in the presence of nanocracks, no new morphologies are formed. BPN exhibits a distinct fracture process when contrasted to graphene. After the critical strain threshold, the graphene transitions from an elastic to a brittle regime, while BPN can exhibit different inelastic stages. These stages are associated with the appearance of new morphologies. However, BPN shares some of the exceptional graphene properties. BPN Young's modulus and melting point are comparable to graphene, about 1019.4 GPa and 4024 K, respectively.

2.
J Phys Chem A ; 120(28): 5464-73, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27355487

RESUMEN

The present paper concludes our series of kinetics studies on the reactions involved in the complex mechanism of nitrogen trifluoride decomposition. Two other related reactions that, along with this mechanism, take part in an efficient boron nitride growth process are also investigated. We report results concerning two abstraction reactions, namely NF2 + N ⇄ 2NF and NF3 + NF ⇄ 2NF2, and two dissociations, N2F4 ⇄ 2NF2 and N2F3 ⇄ NF2 + NF. State-of-the-art electronic structure calculations at the CCSD(T)/cc-pVTZ level of theory were considered to determine geometries and frequencies of reactants, products, and transition states. Extrapolation of the energies to the complete basis set limit was used to obtain energies of all the species. We applied transition state theory to compute thermal rate constants including Wigner, Eckart, Bell, and deformed theory corrections in order to take tunneling effects into account. The obtained results are in good agreement with the experimental data available in the literature and are expected to provide a better phenomenological understanding of the NF3 decomposition role in the boron nitride growth for a wide range of temperature values.

3.
J Phys Chem Lett ; 3(20): 3039-42, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-26292246

RESUMEN

We report the effects of electron-lattice coupling on the charge density distribution study of armchair graphene nanoribbons (GNRs). Here, we perform a theoretical investigation explaining the unexpected electronic density states observed experimentally. By means of a tight-binding approach with electron-lattice coupling, we obtained the same characteristic pattern of charge density along the C-C bonds suggested by both scanning tunneling and transmission electron microscopic measurements. Our results suggest electronic localized states whose sizes are dependent on the GNR width. We also show that our model rescues the quasi-particle charge-transport mechanism in GNRs. The remarkable agreement with experimental evidence allows us to conclude that our model could be, in many aspects, a fundamental tool when it comes to the phenomenological understanding of the charge behavior in this kind of system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...