Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Lab Anim ; 58(1): 22-33, 2024 Feb.
Article En | MEDLINE | ID: mdl-37684026

Thiamine deficiency experimental models focus on using the pyrithiamine analog in male rodents, making the thiamine deficiency effects in females and the use of other thiamine antagonists, such as amprolium, unknown. We investigated the impact of thiamine deficiency with amprolium in the cerebral cortex and thalamus of male and female mice by evaluating the modulation of ERK1/2 phosphorylation. The animals were exposed for 20 days to thiamine-deficient chow with different doses of amprolium (20, 40, 60 and 80 mg/kg) and at different treatment periods (five, 10, 15 or 20 days) at a dose of 60 mg/kg. After treatments, ERK1/2 phosphorylation was analyzed by western blot. In male mice, we observed a progressive increase in ERK1/2 phosphorylation in both the cerebral cortex and thalamus in response to the dose of amprolium. In females, ERK1/2 phosphorylation did not progressively increase in response to the amprolium dosage. However, an increase in phosphorylation at the higher doses of 60 and 80 mg/kg was observed. We observed a more intense increase in ERK1/2 phosphorylation in males' cerebral cortex and thalamus from 10 days onwards. In females, the ERK1/2 modulation profiles were similar. The results show that thiamine deficiency induction with amprolium is efficient, compatible with other recognized models that use pyrithiamine, showing changes in cell signaling in the nervous system. The study showed differences in response to thiamine deficiency with amprolium between male and female mice in relation to ERK1/2 phosphorylation and demonstrated that females respond positively to the method and can also be used as model animals.


Thiamine Deficiency , Thiamine , Mice , Male , Animals , Female , Amprolium/pharmacology , Pyrithiamine/pharmacology , MAP Kinase Signaling System , Central Nervous System
2.
J Fungi (Basel) ; 8(2)2022 Jan 20.
Article En | MEDLINE | ID: mdl-35205855

Horizontal transmission of fluconazole-resistant Candida parapsilosis (FRCP) through healthcare workers' hands has contributed to the occurrence of candidemia outbreaks worldwide. Since the first COVID-19 case in Brazil was detected in early 2020, hospitals have reinforced hand hygiene and disinfection practices to minimize SARS-CoV-2 contamination. However, a Brazilian cardiology center, which shares ICU patients with a cancer center under a FRCP outbreak since 2019, reported an increased FRCP candidemia incidence in May 2020. Therefore, the purpose of this study was to investigate an inter-hospital candidemia outbreak caused by FRCP isolates during the first year of the COVID-19 pandemic in Brazil. C. parapsilosis bloodstream isolates obtained from the cancer (n = 35) and cardiology (n = 30) centers in 2020 were submitted to microsatellite genotyping and fluconazole susceptibility testing. The ERG11 gene of all isolates from the cardiology center was sequenced and compared to the corresponding sequences of the FRCP genotype responsible for the cancer center outbreak in 2019. Unprecedentedly, most of the FRCP isolates from the cardiology center presented the same genetic profile and Erg11-Y132F mutation detected in the strain that has been causing the persistent outbreak in the cancer center, highlighting the uninterrupted horizontal transmission of clonal isolates in our hospitals during the COVID-19 pandemic.

3.
J Appl Microbiol ; 132(2): 1036-1047, 2022 Feb.
Article En | MEDLINE | ID: mdl-34496109

AIMS: Carbapenem-resistant Acinetobacter baumannii represents a public health problem, and the search for new antibacterial drugs has become a priority. Here, we investigate the antibacterial activity of biogenic silver nanoparticles (Bio-AgNPs) synthesized by Fusarium oxysporum, used alone or in combination with polymyxin B against carbapenem-resistant A. baumannii. METHODS AND RESULTS: In this study, ATCC® 19606™ strain and four carbapenem-resistant A. baumannii strains were used. The antibacterial activity of Bio-AgNPs and its synergism with polymyxin B were determined using broth microdilution, checkboard methods and time-kill assays. The integrity of the bacterial cell membrane was monitored by protein leakage assay. In addition, the cytotoxicity in the VERO mammalian cell line was also evaluated, and the selectivity index was calculated. Bio-AgNPs have an antibacterial activity with MIC and MBC ranging from 0.460 to 1.870 µg/ml. The combination of polymyxin B and Bio-AgNPs presents synergy against four of the five strains tested and additivity against one strain in the checkerboard assay. Considering the time of cell death, Bio-AgNPs killed all carbapenem-resistant isolates and ATCC® 19606™ within 1 h. When combined, Bio-AgNPs presented 16-fold reduction of the polymyxin B MIC and showed a decrease in terms of viable A. baumannii cells in 4 h of treatment, with synergic and additive effects. Protein leakage was observed with increasing concentrations for Bio-AgNPs treatments. Additionally, Bio-AgNP and polymyxin B showed dose-dependent cytotoxicity against mammalian VERO cells and combined the cytotoxicity which was significantly reduced and presented a greater pharmacological safety. CONCLUSIONS: The results presented here indicate that Bio-AgNPs in combination with polymyxin B could represent a good alternative in the treatment of carbapenem-resistant A. baumannii. SIGNIFICANCE AND IMPACT OF STUDY: This study demonstrates the synergic effect between Bio-AgNPs and polymyxin B on carbapenem-resistant A. baumannii strains.


Acinetobacter baumannii , Metal Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Carbapenems , Chlorocebus aethiops , Drug Synergism , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Silver/pharmacology , Vero Cells
4.
Am J Physiol Heart Circ Physiol ; 285(1): H154-62, 2003 Jul.
Article En | MEDLINE | ID: mdl-12623788

Ischemic preconditioning, or the protective effect of short ischemic episodes on a longer, potentially injurious, ischemic period, is prevented by antagonists of mitochondrial ATP-sensitive K+ channels (mitoKATP) and involves changes in mitochondrial energy metabolism and reactive oxygen release after ischemia. However, the effects of ischemic preconditioning itself on mitochondria are still poorly understood. We determined the effects of ischemic preconditioning on isolated heart mitochondria and found that two brief (5 min) ischemic episodes are sufficient to induce a small but significant decrease ( approximately 25%) in mitochondrial NADH-supported respiration. Preconditioning also increased mitochondrial H2O2 release, an effect related to respiratory inhibition, because it is not observed in the presence of succinate plus rotenone and can be mimicked by chemically inhibiting complex I in the presence of NADH-linked substrates. In addition, preconditioned mitochondria presented more substantial ATP-sensitive K+ transport, indicative of higher mitoKATP activity. Thus we directly demonstrate that preconditioning leads to mitochondrial respiratory inhibition in the presence of NADH-linked substrates, increased reactive oxygen release, and activation of mitoKATP.


Hydrogen Peroxide/metabolism , Ischemic Preconditioning , Mitochondria, Heart/metabolism , Myocardium/metabolism , Oxygen Consumption/physiology , Potassium/metabolism , Adenosine Triphosphate/metabolism , Animals , Biological Transport, Active/physiology , Cell Membrane/physiology , In Vitro Techniques , Male , Membrane Potentials/physiology , Mitochondrial Swelling/physiology , NADP/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
5.
FEBS Lett ; 536(1-3): 51-5, 2003 Feb 11.
Article En | MEDLINE | ID: mdl-12586337

Mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) opening was shown previously to slightly increase respiration and decrease the membrane potential by stimulating K(+) cycling across the inner membrane. Here we show that mitoK(ATP) opening reduces reactive oxygen species generation in heart, liver and brain mitochondria. Decreased H(2)O(2) release is observed when mitoK(ATP) is active both with respiration stimulated by oxidative phosphorylation and when ATP synthesis is inhibited. In addition, decreased H(2)O(2) release is observed when mitochondrial Delta pH is enhanced, an effect expected to occur when mitoK(ATP) is open. We conclude that mitoK(ATP) is an effective pathway to trigger mild uncoupling, preventing reactive oxygen species release.


Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Potassium Channels/metabolism , Reactive Oxygen Species/metabolism , Animals , Brain/metabolism , Hydrogen Peroxide/metabolism , Ion Transport , Mitochondria, Heart/metabolism , Mitochondria, Liver/metabolism , Oxidative Phosphorylation , Potassium/metabolism
...